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A modification of the Press–Schechter theory allowing for presence of a background

large-scale structure (LSS) – a supercluster or a void is proposed. The LSS is ac-

counted as the statistical constraints in form of linear functionals of the random

overdensity field. The deviation of the background density within the LSS is inter-

preted in a pseudo-cosmological sense. Using the constraints formalism may help

us to probe non-trivial spatial statistics of haloes, e.g. edge and shape effects on

boundaries of the superclusters and voids. Parameters of the constraints are con-

nected to features of the LSS: its mean overdensity, a spatial scale and a shape, and

spatial momenta of higher orders. It is shown that presence of a non-virialized LSS

can lead to an observable deviation of the mass function. This effect is exploited

to build a procedure to recover parameters of the background perturbation from the

observationally estimated mass function.

PACS numbers:

1. INTRODUCTION

Mass function of Press & Schechter [18] (hereafter PS) for dark haloes depends on global

cosmological parameters so does not incorporate the presence of the background large-scale

disturbances which can form superclusters and voids. Presence of the LSS alter the matter

density and can change the growth rate of cosmological fluctuations. This problem was first

considered by Bond et al. [2] and Bower [3] as the ‘two barrier’ problem and improved by Mo

& White [14], Sheth & Tormen [26], and others. These models provided a connection between

the mass function and the background overdensity making possible to solve the inverse

problem of recovering the last, as was done by Muñoz & Loeb [15] and Sheth & Diaferio

[23]. In these models, however, the background perturbation was considered spherical. Also
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there was not provided a possibility to examine effects of transition between structures of

different densities, e.g. between superclusters and voids.

In this paper a modification of the PS theory is proposed allowing for a background per-

turbation (name it ‘host’) which is associated with the supercluster or the void. The host

perturbation is defined by a set of statistical constraints for the cosmological perturbation

field. Growth rate of the random perturbations depends on the host overdensity and deter-

mines dynamical age of the population of haloes. As a demonstration of applicability of the

model the inverse problem is considered in a simple case for recovering the host overdensity.

Below, in 2nd Section described the modification of the PS theory. In the 3rd Section

considered an application of the theory to superclusters and voids. Benefits and issues are

discussed in the 4th Section.

2. PRESS–SCHECHTER THEORY WITH STATISTICAL CONSTRAINTS

2.1. Outline

The key element of the excursion set theory is the assumption that the virialized haloes

form in a hierarchical stochastic process of absorbtion of haloes of lower masses. Herewith,

only those haloes are counted for mass function which are on a top level of a hierarchical

tree, i.e. are not sub-haloes of any other halo. The stochastic nature of the process is

governed by properties of the initial cosmological fluctuations. Conditions for fluctuations

to form a virialized object may be implied to linear stage of their evolution, and with a good

approximation they are conditions for the filtered overdensity only. A halo condensed when

its characteristical linearly evolved overdensity exceeded some threshold value given from

the spherical collapse model. Defining the statistical properties of the fluctuations, their

growth rate, and the threshold overdensity allows for completely determining of the function

of mass of the haloes for any redshift [2, 11].

The idea is necessary for this research to be done is to describe a large-scale perturbation

using formalism of statistical constraints in such a way so that would be possible to define

various parameters of the host, e.g. volume averaged density, spatial scale, momenta of

inertia etc. The cosmological fluctuations, from which the sub-structures developed, should

evolve on top of the background modified by the host. Let’s define φ as the residual between

a total overdensity field δ and overdensity of the host ∆ (which is the ensemble mean for δ,
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and will be defined in Subsec. 2.2.2):

φ(r) ≡ δ(r)−∆(r) , (1)

where r is the spatial position. Also define the field which is filtered over a volume with

characteristic scale R:

φ(r, R) ≡
∫

d3r′W (|r− r
′|, R)φ(r′) , (2)

where W (r, R) is the filtering function. In a simple approximation all the interesting informa-

tion on the features of the host contains in variance of the filtered field Σ(r, R) ≡ 〈φ2(r, R)〉.
According to excursion set theory, the hierarchical halo formation process can be interpreted

as a random process for the overdensity filtered over the scale R acting as a parameter of

the random process. The process starts at the parameter R = ∞ moving toward R = 0.

The mass function can be expressed then via the distribution function for the parameter

values when the process first crossed a certain threshold. In presence of the constraints the

statistical homogeneity and isotropy of the fluctuations field may be broken and spectral

modes of the fluctuations may have non-trivial correlations. Because of this, the excursion

set approach in its standard form may not work. This issue will be touched in Subsection

2.2.5.

In theories of PS class the evolution of amplitude of the fluctuations can be accounted

either as a time-dependent overdensity threshold or as evolution of the variance. We will

stick to the second scheme since it makes possible, in principle, to consider the non-linear

corrections to the field evolution. Exact calculation for evolution of the fluctuations’ am-

plitude is difficult even in lowest orders of the perturbation series approach. For Gaussian

field these calculations were completed just up to 1-loop corrections, i.e. to 2-nd order of

accuracy in power spectrum [10], or up to 3-rd order in expressions for filtered statistical

momenta [20]. In a non-gaussian case the task became more complicated since the field has

not zero mean so the same precision order requires at least twice as many integrals to get

[4, 5]. In our theory we will restrict ourselves to a purely linear evolution, so the overdensity

will be proportional to the linear growth factor D:

φ(z, r) = D(z, r)φL(r) . (3)

Hereafter the ‘L’ index means values linearly evolved to the present time with unity growth

factor.
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The linear evolution of perturbations settled on a large scale host overdensity of both

signs (the supercluster or void) can be represented in a perturbation theory for the certain

cosmology, which parameters are determined by density of the host. In the overdense host

the perturbations will attain higher values of the growth factor than in global cosmology, in

the underdense host the last will be lower. Thus, the host overdensity is in charge of the age

of haloes population.

It is important to note that all spatial distributions below are defined in a lagrangian

coordinates comoving with the matter in modified background. We will distinguish them

from the coordinates comoving with the Hubble flow which called the eulerian coordinates.

In this work the ΛCDM model is used with following parameters: ΩΛ,0 = 0.7, Ωm,0 = 0.3,

σ8 = 0.9. The power spectrum is P (k) ∝ kT 2(k), where the transfer function is computed

using the Scicmbfast code of Seljak & Zaldarriaga [21]. The units adopted are h−1M⊙ for

mass, h−1Mpc for length and h−1H−1
100 for time, where H100 = 100 km s−1 Mpc−1.

2.2. Constrained correlation function for modes

To calculate the statistical characteristics such as the variance and the spatial correlation

function, we need the correlation function for modes of the constrained field. It’s convenient

to make calculations using spherical modes decomposition. To obtain the correlation function

for amplitudes of the spherical modes we will use approach of Hoffman & Ribak [8], which

was proposed by them for plane waves.

The field δ(r) = δ(r,ω)1 can be decomposed to spherical modes via transformation

δ(r) =

√

2

π

∞
∑

l=0

l
∑

m=−l

∫

∞

0

dk k2jl(kr) Ylm(ω) δ̃lm(k) , (4)

where jl is the radial Bessel’s functions; Ylm is the spherical functions with normalization
∮

4π
dω Y ∗

lmYl′m′ = 4πδll′δmm′ . Amplitude of spherical decomposition of the field, or image, is

δ̃lm(k) =

√

2

π

∫

∞

0

dr r2jl(kr)

∮

4π

dω Y ∗

lm(ω) δ(r,ω) . (5)

The image of radially symmetric field H(r) consists of only isotropic modes:

H̃lm(k) = δl0δm0H̃(k) , (6)

1 The index ‘L’ is dropped in this Subsection.
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where δij is the Kronecker’s delta, while

H̃(k) =

√

2

π

∫

∞

0

dr r2j0(kr)H(r) , (7)

H(r) =

√

2

π

∫

∞

0

dk k2j0(kr)H̃(k) . (8)

Let us write constraints in form of linear functionals, assuming kernels are spherically

symmetric and place their centers at origin. Using this conditions, the functional for α-th

constraint can be written as

Cα[δ] =

∫

d3r Hα(r) δ(r) = 4π

∫

∞

0

dk k2H̃α(k) δ̃00(k) . (9)

The constraints itself are fixed by assigning certain values Cα to these functionals. Also

the kernels can depend on a set of parameters characterizing the host, like a spatisl scale,

derivations, or momenta.

Following Hoffman & Ribak [7, 8] it can be showed that the ensemble mean of the con-

strained field is

∆(r) = 〈δ(r)|{Cα}〉 , (10)

∆̃lm(k) = 〈δ̃lm(k)|{Cα}〉 = δl0δm0Q
−1
αβ Cα ξ̃β(k) , (11)

where Cα are the values of the constraining functionals; ξ̃α(k) are images of cross-correlation

function between the field and α-th constraint:

ξα(r) = 〈δ Cα[δ]〉 , ξ̃α(k) = H̃α(k)P (k) ; (12)

and Q−1
αβ is the inversion of the constraints’ correlation matrix

Qαβ = 〈Cα[δ]Cβ[δ]〉 = 4π

∫

∞

0

dk k2H̃α(k) H̃β(k)P (k) ; (13)

we also can write Qαβ = Cα[ξβ]. It can be showed that the pair correlation function for the

constrained ensemble of modes is determined by the residuals:

Klml′m′(k, k′) =
〈

φ̃lm(k) φ̃l′m′(k′)
〉

=
〈(

δ̃lm(k)− ∆̃lm(k)
)(

δ̃l′m′(k′)− ∆̃l′m′(k′)
)〉

, (14)

where averaging performed over the non-constrained ensemble. The non-constrained field is

delta-correlated, which means

〈

δ̃lm(k) δ̃l′m′(k′)
〉

= δll′δmm′

δ1D(k − k′)

4πkk′
P (k) , (15)
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where δ1D is the one-dimensional Dirac’s delta-function. Substituting the definition for

ensemble mean field we have

Klml′m′(k, k′) = δll′δmm′

δ1D(k − k′)

4πkk′
P (k)− δl0δm0δl′0δm′0 Q

−1
αβ ξ̃α(k) ξ̃β(k

′) . (16)

As can be seen, the presence of constraints leads to fact that the modes are correlated. This

changes the spatial statistics of the modes, particularly induces the spatial dependency of

the variance. General expression for variance of the filtered field is

Σ(r, R) = 〈φ2(r, R)〉 , (17)

where the filtering in spherical decomposition appears in the form

φ(r, R) = 4π

∫

∞

0

dk k2j0(kr) W̃ (k, R) φ̃00(k) . (18)

The filter chosen is ’top-hat’:

W (r, R) =
3

4πR3
θ(1− r/R) , (19)

W̃ (k, R) =
3

(2π)3/2
sin kR− kR cos kR

(kR)3
. (20)

Substituting (16) into the general expression we obtain

Σ(r, R) = S(R)−Q−1
αβ ξα(r, R) ξβ(r, R) , (21)

where S(R) denoted the variance of the non-constrained field,

S(R) = 4π

∫

∞

0

dk k2W̃ 2(k, R)P (k) , (22)

and ξα(r, R) is the filtered cross-correlator (12) defined in the same way as in Eq. (18).

Because of the constraints the variance becomes dependent on the spatial position. The

magnitude of corrections in Eq. (21) decays to zero when r → ∞. We also may expect this

behavior when R → ∞.

2.3. Constraining kernels and host profile

The amplitude of the mean constrained field or mean overdensity profile is the linear

combination of the cross-correlators between the field and the constraints. Choosing appro-

priate constraining kernel it is possible to set a particular profile for the host. Using set
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of the kernels, the mean field can be represented as a combination of some basis profiles.

Again, the constraints can be thought of in terms of spatial momenta of the host’s density

distribution, i.e. average value, moment of inertia, etc.

At the first time consider the single constraint with the top-hat kernel, H(r, RH) ≡
W (r, RH). It is easy to see that value of the constraining functional (9) with this kernel fixates

the overdensity value averaged over a sphere of radius RH. Several overdensity constraints

applied to different scales RH,α may be combined to obtain more complex profile. In this

case the constraining kernels set should be defined as

Hα(r) ≡ H(r, RH,α) . (23)

The kernels may be choosed to fixate the spatial momenta of different orders:

Hα(r) ≡ rαH(r, RH) . (24)

Yet another possible way to use constraints is to fixate values of the spatial derivations

of the host:

Cα[f ] ≡ C

[

dαf

drα

]

=

∫

d3r H(r, RH)
dαf(r)

drα

=(−1)α
∫

d3r
∂αH(r, RH)

∂rα
f(r) .

(25)

The set of the kernels in this case is defined as

Hα(r) ≡ (−1)α
∂αH(r, RH)

∂rα
. (26)

Using reccurence relations for radial Bessel functions jl and their derivations, it can be shown

that all the differential constraints of the odd order turn to zero because of symmetry. Images

for the second and fourth derivations of the kernel are expressed as

H̃2(k) = −k2

3
H̃(k) , H̃4(k) =

k4

5
H̃(k) . (27)

In this approach the constraints actually fix the moments in the momentum space of the

convolved field.

All the examples above were based on the spatially symmertic kernel H(r, RH). Hence,

the ensemble average profile ∆(r), Eq. (10), has the same property.

From the Eq. (21) it follows that the constraining kernels (but not the values of the

constraining functionals) are responsible for corrections to the variance, which is represented
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on Fig. 1. On each plot the curves correspond to a fixed radial position inside the host.

The farther from the center of the host, the lesser its influence on the filtered field, then the

variance turns to its non-constrained form. In the case when filtering spheres are adjusted

to the center of the host (r = 0), the variance falls to zero for a certain filtering scale. This

is the result of using the top-hat constraining kernel, when a value of the filtered overdensity

is fixed, i.e. the filtered field loses randomness exactly on the scale R = RH. The several

dips appeared when several constraints of a kind (23) are implemented. It was found that

applying the derivation constraints (26) does not cause differences from the case of the single

overdensity constraint (23), even for higher orders of derivating (not shown on the Fig. 1).

We can go the opposite way, to define the basis profiles then obtain the corresponding set

of constraints. Namely, let the cross-correlators ξα(r) be the basis profiles. Given values Cβ

of the constraining functionals, we can express

∆(r) = Q−1
αβCβξα(r) , (28)

where Qαβ = Cα[ξβ]. For example, the profile ∆(r) could appear from a numerical compu-

tations as given, then a single constraint could be generated via this scheme.

Profiles resulting from constraints given above are shown on Fig. 2. In all the cases, except

when the momenta constraints used, the volume averaged overdensity (denote it C0) was set

to unity. On top panel the profile resulting from applying four overdensity constraints (23)

is presented demonstrating the possibility to model structures having complex form. The

computed profiles exhibited moderate variability between nearly zero and unity levels. In

contrast, when the momenta constraints were applied, the amplitude of variation was much

higher though C0 was set to 0.1. This suggests that the momenta constraints (24) are hardly

suitable for the supercluster profile fitting as the overdensity profile they gave has too strong

features to fit.

It is important to note that all the spatial distributions mentioned above are actually de-

fined as a functions of lagrangian coordinates, i.e. comoving with the matter of the growing

host. The mass conservation during this process causes displacements of lagrangian ele-

ments. Mapping of the lagrangian coordinates to the eulerian ones, i.e. comoving with the

Hubble flow, could be followed tracking the evolution of the ‘fluid’ element in a perturbed

gravitational field [9]. When the perturbation, the host in our case, has spherical symmetry,
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Figure 1. Variance as a function of mass for different sets of constraints. Left column. The single top-hat

constraint is used. From top to bottom: R = 10, R = 30, and R = 50h−1Mpc correspondingly. Right

column. Top figure: used four top-hat constraints having scales R = 10, 20, 30, 40h−1Mpc. Middle figure:

used derivation constraint of the kind (26) for R = 30h−1Mpc. Bottom figure: used momenta constraints

of the kind (24) for R = 30h−1Mpc. At all plots solid line is for r = 0, long-dash-dotted line is for r = R/2,

long-dashed line is for r = R, and short-dashed represents variance for non-constrained field. In the case of

multiple top-hat constraints (right top figure) R = 40h−1Mpc. Thin short-dashed line stands for unity

level, the nominal level of non-linearity.
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Figure 2. Mean overdensity as a function of lagrangian radial coordinate. These profiles are obtained for

different sets of constraints listed in Subsection 2.2.3. Top panel. A single top-hat constraint for three

values of the scale radius RH: 50 (solid line), 30 (long-dashed line), and 10h−1Mpc (dot-dashed line). Used

the same value of the averaged overdensity 1. With a short-dashed line depicted a distribution with a

combination of four top-hat constraints having different scale radii: 10, 20, 30, 40h−1Mpc and

corresponding averaged overdensities 1, 0.75, 0.5, and 0.25. Middle panel. Derivations constraints of the

kind (26) for α = 0, 2 and RH = 30h−1Mpc, where C0 = 1, and C2 values are 0 (solid line), −0.25

(long-dashed line), −0.5 (dot-dashed line). Bottom panel. Momenta constraints of the kind (24) for

α = 0, 1 and RH = 30h−1Mpc, where C0 = 0.1, and C1 values are 0 (solid line), −1 (long-dashed line), 1

(dot-dashed line).



11

the mapping could be established trivially:

r3eul(z) = 3

∫ rlag

0

dr
r2

1 + ∆(z, r)
. (29)

2.4. Linear growth of perturbations

The evolution of perturbations inside an overdense or underdense region can be examined

in a pseudo-cosmological notation, if parameters of such notation are chosen appropriately

[17, 27]. The parameters are: scale factor, Hubble constant, critical density, and density

parameters. For analysis of their dependency on the perturbation overdensity see Martino

& Sheth [13]. The brief description is following. The present day value of the scale factor

of perturbation a′0 is determined by the present day amplitude of the region ∆0 as a′0 =

(1 + ∆0)
−1/3 while a′ ≈ a, the global scale factor, at early epoch. The Hubble constant H ′

0

can be determined implicitly, using these boundary conditions with equation

a

a′
da′

da
=

H ′(a′/a′0,Ω
′

m,0,Ω
′

Λ,0)

H(a,Ωm,0,ΩΛ,0)
, (30)

where the present day density parameters of perturbation are

Ω′

m,0 = (1 + ∆0)
Ωm,0

(H ′

0/H0)2
and Ω′

Λ,0 =
ΩΛ,0

(H ′

0/H0)2
. (31)

The values found have to be substituted to the linearized equation for overdensity, then the

last will be defined relatively to the perturbed background [13]. The linear growth factor D

inside the spherical perturbation can be determined via equation

a′H ′
d

da′

(

a′H ′
dD

da′

)

+ 2a′H ′
dD

da′
− 3Ω′

m,0H
′2
0

2(a′/a′0)
3
D = 0 . (32)

The initial condition is the growing mode condition D ≈ a′ at early epoch, independing on

∆0.

As we are building the local theory, the value of ∆0 should be interpret as a present

day non-linear amplitude of the host profile averaged over the volume of the small scale

perturbation. However, the statistical constraints applied to the cosmological perturbations

result in the host profile at high redshift. Instead of following non-linear evolution of the

host, assume the linear approximation (3). The actual host profile at a given redshift will

be then

∆(z, r) = D(z; ∆0 = 0)∆L(r) , (33)
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where D(z; ∆0 = 0) is the linear growth factor for the global cosmology, and ∆L(r) is the

mean overdensity profile (10). Further, to obtain ∆0 the averaging procedure should be

applied to this profile at redshift zero.

We assume that the variance of the filtered perturbations (21) seeded inside the host is

also governed by the local linear law

Σ(z, r, R) = D2(z) ΣL(r, R) , (34)

where D is the local growth factor inside the host computed for the corresponding amplitude

∆0 of the host’s ‘patch’ averaged over the sphere R.

2.5. Mass distribution function

In interpretation of Bond et al. [2] for the PS theory, the excursion set formalism relies on

two key ideas. First, only those virialized haloes are counted for mass function, which are on

a top level of a hierarchical tree, i.e. not sub-haloes of any other halo. Second, the conditions

for fluctuations to form a virialized object may be implied to linear stage of their evolution,

and with a good apporximation they are conditions for the filtered overdensity only. These

ideas were successfully realized in terms of a random process for the overdensity φ(R) filtered

over the scale R acting as a parameter of the random process. The process starts at the value

0 and the parameter R = ∞ moving toward R = 0. The mass function can be expressed

then via the distribution function for the parameter values when the process first crossed a

certain threshold δc. In the absence of constraints the solution for this problem is the PS

distribution function (to the correcting factor ‘two’):

fS =
δc√
2πS3

exp

(

− δ2c
2S

)

, (35)

where the variance S used as an equivalent measure of the filtering scale. Bond et al. [2]

noted that this random process is not markovian in general, but only if k-sharp filter used. In

their paper the authors proposed a procedure to calculate corrections to the PS distribution

function for a general filter (see also Maggiore & Riotto [12]). However, in this Paper we

will neglect corrections of such kind for simplicity.

In case of a general gaussian random process φ(S) the distribution function can be written

in a form [12]

fS = − ∂

∂S

∫

D[φ] exp

(

−1

2
φTA−1φ

)

. (36)
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This integral is computed over all possible trajectories of the field, not exceedeing the thresh-

old δc. The look of integration measure D[φ] is not important for our study, except it must

be positive. The covariance matrix in our case is just

A(r, S ′, S ′′) = 〈φ(r, S ′)φ(r, S ′′)〉 (37)

= 4π

∫

∞

0

dk k2 W̃ (k, S ′) W̃ (k, S ′′)P (k)−Q−1
αβ ξα(r, S

′) ξβ(r, S
′′) . (38)

Assume firstly the case when r = 0 and H̃α(k) = W̃ (k, Sα). Denoting ξ(S ′, S ′′) ≡
4π

∫

∞

0
dk k2 W̃ (k, S ′) W̃ (k, S ′′)P (k) we have Qαβ = ξ(Sα, Sβ) and

A(0, S ′, S ′′) = ξ(S ′, S ′′)−Q−1
αβ ξ(S

′, Sα) ξ(S
′′, Sβ) . (39)

It is obvious that A(0, S ′, Sα) ≡ A(0, Sβ, S
′′) ≡ 0, i.e. the covariance matrix has zeroth rows

and columns corresponding to each constraining scale. Hence, the inverse of the covariance

matrix is singular at the parameters’ pairs (Sα, Sβ). For this reason the contribution of the

field to the intergral at this points is zero. Due to positiveness of the integrand function,

the last is also true for a certain vicinities of these pairs. Thus, the distribution function fS

should turn to zero when S = Sα. In a more general case, if r > 0, the covariance matrix

does not vanish but suppressed at the corresponding rows and columns. This also leads to

a suppression of the distribution function at the constraining scales. Indeed, as the mean

overdensity has been fixed at a scale Sα, its variance vanishes, so at this scale the structures

does not form.

The cross-correlator function ξ(S ′, S ′′) behaves roughly like min(S ′, S ′′) (this is exactly

true for the k-sharp filter). Hence, at large spatial scales (small variance) the covariance

matrix reduces to the non-constrained one (and also the distribution function does). On

the other hand, at small spatial scales it tends to the non-constrained matix, minus some

constant amount of order Q−1
αβSαSβ. These limiting cases and all the above suggest us the

form of the distribution function preserving the behaviours just investigated. It is the Eq.

(35), after substituting the constrained variance Σ instead of the non-constrained S. Taking

this as an approximation write out the final definition of the mass PDF which is adopted in

subsequent calculations:

fm =

∣

∣

∣

∣

∂S

∂m

∣

∣

∣

∣

δc√
2πΣ3

exp

(

− δ2c
2Σ

)

. (40)

Here used the relation between mass and the filtering scale, m = (4π/3) Ωm,0ρcr,0R
3. This

mass PDF should be renormalised to unity integral.
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Let us summarize the properties of this function. First of all, it depends on spatial position

inside the host since the growth factor and the variance depend too. These dependencies are

defined by the constraints (or shape of the host profile) as well as their values. Presence of

the host itself decreases the variance of the fluctuations’ field.

Connection of the background mass distribution to clustering of haloes was considered

much earlier by Bond et al. [2] and Bower [3]. Their biased mass PDF can be formally

defined as a result of substitutions δc 7→ δc − δH and S 7→ S − SH into the PS distribution

(35), where SH is the non-constrained variance on the scale of the host, and δH is the linear

overdensity of the host. This result appears in the presented theory as a special case, when

the top-hat kernel is used both for single constraint and for filtering, and when the PDF

considered at the centre of the host. In this case the variance reduces to the simple difference

Σ = S−SH, and the threshold overdensity can be written as the difference noted above when

it’s expressed relatively to the global density instead of the host’s. According to previous

authors this special case will be named the extended PS (ePS) model.

Resulting mass PDFs for the single top-hat constraint are shown at Fig. 3. These runs

differ by the volume-averaged overdensity and the eulerian radius of the host (according

to Eq. (29)). At the first three columns the eulerian radii of the hosts are finite, hence,

the effect of modes correlation is on hand appearing as the radial dependence of the shape

of the PDF. The most meaningful constrasts between the constrained PDFs and PS one

(short-dashed line) is seen for PDFs measured at the centre of the host (solid line), while the

outer area of the host has a lesser impact on the modes statistics. Dips and gaps correspond

to the mass scale of the entire host. While the gaps are likely artefacts of the spherical

top-hat constraint, the certain suppression of the PDF might be a common feature marking

the mass scale of the host (e.g. this is the feature of the derivation constraints and momenta

constraints also, see Fig. 1 and Subsection 2.2.3). Qualitatively the same result was obtained

by Sheth & Tormen [26] where PDF is cut on the host mass scale.

The rightmost column is for a formally ‘uniform’ limit RH → ∞, when the statistics

of modes reduces to the non-constrained case, so the population of haloes is affected only

through the growth factor. This is also the low mass limit for the PDF.

From the observational point of view the number density of haloes of certain mass is more

preferable value than the mass PDF. The number of haloes per unit comoving volume (i.e.
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Figure 3. Mass PDF (multiplied by m) at z = 0 for a single top-hat constraint having different scales

and volume-averaged overdensities. Each row correspond to a certain overdensity ∆ (from top to bottom):

−0.65, 1, 4. Columns from 1 to 3 correspond to a certain constraining scale RH (from left to right): 3, 10,

30 h−1Mpc. On each plot the PDFs is shown for r = 0 (solid line), r = RH/2 (long-dashed line), and

r = RH (dot-dashed line). Plots in column 4 correspond to ‘uniform’ case (see text). The short-dashed line

stands for non-constrained mass PDF of Press&Schechter.

the lagrangian one) and unit mass is [24]

n(z, r,m) = Ωm,0ρcr,0
fm(z, r,m)

m
. (41)

Binding to observational volume, i.e. to the eulerian one, should be done with jacobian of

coordinate transformation. In the case of the spherical host the transformation is (29), so
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neul = (1 + ∆)n.

In the cumulative mass function all the strong features of the PDF, like dips, are smoothed

when integrating over the volume. The cumulative number of haloes inside a sphere of a

given lagrangian radius is

N(z, < Rlag, > m) = 4π

∫ Rlag

0

dr r2
∫ mlag

m

dm′ n(z, r,m′) , (42)

where mlag = (4π/3) Ωm,0ρcr,0R
3
lag is the mass enclosed in the sphere of interest with la-

grangian radius Rlag. On Fig. 4 depicted the mass CDF for different constraining scales and

overdensities. Three classes of models are considered: first where the constraining radius

and radius of the sphere of interest are coincide (solid lines), second one when the ‘uniform’

background is used, i.e. constraining radius is infinite (long-dashed lines), and third one cor-

respond to the non-constrained runs. The differences between first two are negligible, except

the small sphere of interest case. Deviations from the non-constrained run is significant in

all runs. It’s easy to show that on a small scales (mlag ≪ MH ≡ (4π/3) Ωm,0ρcr,0R
3
H) such a

deviation depends on the mean host overdensity only. This behaviour of the mass CDF was

well known before as a ‘bias’ [14].

It is important to address the question of scatter in the distribution functions specified

above. The scatter can be of two reasons: a deviation of the fluctuations field around the

mean profile, and a shot noise in halo counting.

Muñoz & Loeb [15] introduced a method for estimation of the supercluster overdensity

in ePS model. Their method based on an assumption that given the host overdensity the

number of sub-haloes are distributed accordingly to Poisson law. Connection to the host

overdensity was provided with the equation equivalent to (42) but for the mass PDF fm by

Barkana & Loeb [1]. Their model allowed to estimate the sub-haloes number as well as the

overdensity scatter inside the host. Let’s evaluate the last for a more general case. Define a

distance in a space of profiles using the inversion of the correlation ‘matrix’ (16) as a metric.

The square of distance between a trial profile δ and the mean is then

µ2 = (4π)2
∫

∞

0

dk k2

∫

∞

0

dk′ k′2 K−1(k, k′)
(

δ̃(k)− ∆̃(k)
)(

δ̃(k′)− ∆̃(k′)
)

, (43)

Can be seen that the ‘matrix’ K(k, k′) has very strong diagonal so approximately we can

write

K−1(k, k′) ≈ δ1D(k − k′)

4πkk′

1

P (k)
. (44)
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Figure 4. Cumulative mass function. Columns are for three values of the sphere of interest, and rows are

for three values of the mean overdensity of the host (the same as Fig. 3). Solid lines show the mass CDF in

cases when radius of the sphere of interest coincides with the constraining radius. Long-dashed lines show

the models where the constraining radius is infinite, RH → ∞. Short-dashed lines show results of the

non-constrained runs.

If we determine the trial profile in terms of constraints with kernels hi, constraints’ correlation
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matrix qij , and constraints’ values ci, then the squared distance can be written as

µ2 = q−1
ij cicj +Q−1

αβCαCβ

− 2q−1
ij ciQ

−1
αβCα 4π

∫

∞

0

dk k2h̃j(k) H̃β(k)P (k) . (45)

Given the confidence level µ it is possible to restrict the values ci so the acceptable shapes. As

a particular case, if let the profile’s deviation to be strictly proportional to the mean profile,

the proportionality factor appropriate to the confidence level µ is then µ/(Q−1
αβCαCβ). In a

purely ePS model (which is equivalent to the case with single top-hat constraint, see above)

it’s just µ
√

S(RH)/∆(RH). Accordingly to Fig. 1, this kind of scatter should not matter

much in hosts with enclosed mass & 1015 h−1M⊙ or equivalent lagrangian scale & 10 h−1Mpc.

Another source of scatter arises from the random nature of the excursion process itself.

A clustering process was investigated by Sheth [22] then enhanced by Sheth & Pitman [25]

and Sheth & Lemson [24]. The approach cited lead to results equivalent to the ePS model

Sheth [22]. Let interpret the value of the cumulative mass function N(> m), Eq. (42), as

an ensemble mean of a random function N (> m), which may be represented as a sum over

bins of the mass greater than the given, i.e. N (> m) =
∑

i Ni. Variance of last is then

〈

(N (> m)−N(> m))2
〉

=
∑

i,j

〈NiNj〉 −
∑

i,j

〈Ni〉〈Nj〉 . (46)

Assuming ePS conditions (there are single top-hat constraint defining a host of a mass MH)

and standing on the Poisson initial distribution approximation [22], the cross-correlator

〈NiNj〉 for i 6= j can be expressed in a form similar to eq. (A46) of Sheth & Lemson [24].

For i = j it can be written using their eq. (A49) for α = 2. As shown by Sheth & Lemson

[24], in a small mass limit, m ≪ MH, the cross-correlators decay like 〈NiNj〉 ≈ 〈Ni〉〈Nj〉 for

i 6= j, and also 〈N 2
i 〉 ≈ 〈Ni〉2 + 〈Ni〉. In the opposite limit, m ∼ MH, the cross-correlators

vanish as well as 〈Ni〉. As a result, the poissonian estimation for variance (46) can be quite

reliable, i.e.
〈

(N (> m)−N(> m))2
〉

. N(> m) . (47)

3. RECOVERING PROFILE PARAMETERS OF A HOST

As it turned out, the mass CDF can significantly depend on the host parameters. Consider

the possibility to solve the inverse problem, i.e. to recover the host parameters through the
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measured cumulative mass function of haloes. The target setting for this inverse problem

may be as follows:

– choose a non-virialized structure having spherical shape, or a spherical subvolume;

– choose a set of basis profiles reflecting values we’d like to measure (see Subsec. 2.2.3);

– measure the mass function of virialized substructures inside it, and/or values related

to the constraining values;

– adjust theoretical parameters of the host (lagrangian constraining scales and/or con-

straining values) to fit the theoretical data to the measured data.

Evidently, this inverse problem may be targeted not only to recognize the mean overdensity

of the host but also shape and profile details, using a proper set of the host parameters.

To test the method let’s focus on a simple case, when we interested in only the volume-

averaged overdensity of the host. This problem was already investigated before by Muñoz

& Loeb [15] and Sheth & Diaferio [23] as an application to the ePS model to Shapley’s

supercluster and Sloan Great Wall. Consider the eulerian scale and the mass function at a

given redshift are the input parameters. The output will be the host overdensity linearly

evolved to the corresponding redshift. Theoretical part herewith is reduced to the case of

the single top-hat constraint.

On Fig. 5 is given the number of haloes depending on lower halo mass in the sam-

ple, as well as the host overdensity and its scale. Like on the Fig. 4, results of the runs

for the finite and infinite-sized hosts are indistinguishable in practice, except for the case

RH,eul = 3 h−1Mpc where the boundary effects play crucial role. As seen, the mapping of the

overdensity to the haloes number is not degenerated, though the low density limit is more

reliable in sense of the inverse problem.

To successfully apply the method described above, the full lower-bounded by mass sample

of haloes is necessary. Another way is to adopt a maximum mass halo to bind the overdensity.

As seen on Fig. 6 it is quite sensitive indicator, except for high density case where the

represented dependency effectively degenerated.

Both methods for solving the inverse problem are more sensitive with respect to voids

rather than superclusters. On the other hand, observational difficulties can somewhat com-

plicate the harvesting of statistics for haloes population. Such difficulties are large spatial
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Figure 5. Number of haloes having mass greater than given, as a function of averaged overdensity. The

single top-hat constraint is used. Every column correspond to a certain eulerian radius where the mass

CDF is computed (the sphere of interest). Solid lines show the case when radius of the sphere of interest

coincides with the constraining radius. Long-dashed lines shows the ‘uniform’ models (see text).

extent together with small surface brightness of void galaxies. In spite of this, the methods

provided can be helpful for investigation of the problem of voids and superclusters.
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Figure 6. Maximum mass of a halo containing in a host of given eulerian radius, from top to bottom:

30 h−1Mpc, 10 h−1Mpc, 3 h−1Mpc. The styles of lines denote the same as on Fig. 5.

4. DISCUSSION AND CONCLUSION

In this Paper was presented the method for describing the evolution of a virialized halo

population in superclusters and cosmological voids. The method is based on the model of

Press & Schechter [18] in interpretation of Bond et al. [2] well known as the excursion set

formalism. The difference between last and presented model is that the host is described in

terms of the statistical constraints implied to the initial overdensity fluctuation field. The

constraining procedure used is the method of Hoffman & Ribak [7, 8] reformulated for spher-

ical harmonics. The constraints have form of the linear functionals, and its kernels determine

spatial scale and shape of the host perturbation which evolves to the supercluster or void.

The model accounted for explicit positional dependency of statistical characteristics of the

overdensity field. As a result of imposing the constraints, the characteristics of the statistical

field, as well as the halo mass function, clearly become spatially related to the parameters

of the background structure. The statistical constraints enable us to specify parameters of

the background structure such as the mean density, moments of inertia, gradients, etc.

In the particular cases considered above, the background structure was assumed to be

spherically symmetric. However, it is not difficult to generalize our formalism to a structure

of arbitrary shape, e.g., a cosmological wall or a filament.

As an application, we have considered the recovery of the mean density of the background

structure using both the observed integrated mass function and the mass of the most massive

halo. Both formulations yield results that are more sensitive to cosmological voids than
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superclusters. On the other hand, the fact that it is difficult to observe galaxies within

voids makes the acquisition of reliable halopopulation statistics more complex, since voids

are large and sparsely filled, and galaxies within the voids have low surface brightnesses.

Nevertheless, this method may be helpful in the study of superclusters and voids.
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