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Dark halo mass function in a prescribed spherical host pertubation
— Press—Schechter theory with statistical constraints

E. P. KurbatoV*

LInstitute of Astronomy, 48 Pyatnitskaya <., Moscow, 119017, Russia

4 May 2011

1 INTRODUCTION

The theory of Press and Schechter originated as a semitizahly
approach to describing the evolution of the mass functiodavk
haloes. Today this theory, together with its modificatiqreshaps
the only one that, using some reservations, most closelghaat
observations and numerical modeling for the widest masseraf

ABSTRACT

Here proposed a modification of the Press—Schechter thdlowirzg for the presence of
a host density perturbation — host halo or void. The pertizhas accounted as statistical
constraints in a form of linear functionals of the randomrdemsity field. Deviation of the
background density within perturbation is interpreted psaudo-cosmological sense. Result-
ing mass function of sub-haloes depends on the perturbjadi@meters: its mean overdensity,
spatial scale, and spatial momenta of higher orders. Agidics of the theory to superclus-
ters, voids and bias problem are briefly observed. In itsqmeform, the theory can describe
the clustering properties of sub-haloes inside a non{iggd host only. Possible fix of this
drawback is also discussed.
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this paper allow for the presence of a host density pertimbat
host halo or void, and give the mass function of sub-halopsrid-
ing on the perturbation parameters.

Below in 2nd Section we will describe a modification of the
Press—Schechter theory. In 3rd Section we consider afiphisaof
the theory to superclusters and voids. Benefits and issuébewi
discussed in 4th Section.

dark haloes, down to the resolution limit of numerical rufke
reservations of the theory concerned to its main provisions

— reinterpretation of halo merging as a random walk prockssa 2 PRESS—-SCHECHTER THEORY WITH STATISTICAL
lowed to complete the construction of the theory with a massf CONSTRAINTS

tion of Press and Schechter (Bond et al. 1991); _
— Benson et al. (2005) showed, in the original theory the grerg  2-1 Outline

rate, or the merger kernel, in terms of Smoluchowski equai®
asymmetric function of mass which is flaw; the procedure o &in
symmetric kernel proposed by the authors can solve thigjssu

We assume that the basic model of the theory is canonicatu-e
mulative distribution function for variancg is set by the random
walk in overdensity space with variance acting as a 'timeg, Bond

— spherical collapse model used to get an overdensity tbiebsh o 5], (1991) and Lacey & Cole (1993):
seems too rough; instead were adopted the model of elliplsood

lapse (Monaco 1997a,b) and more general non-sphericalpsell (. g) — erfe ( 5. ) 7 M
model (Lee & Shandarin 1998). V28
Other reservations related to the environmental effecasndly, to whered. is the threshold overdensity for the random process, a
account to the prescripted large-scale distribution obémlor the ~ Parrier for trajectory to pierce to be associated with aaqsed
super-/sub-halo relation, were proposed models usingidenms object._Correspondlng differential probability distritmn function
tions about merger process (Mo & White 1996, on alternathess (PDF)is
references therein), and also heuristic models (Peacockn&S OF 5 52

e . (<5) : M
2000).! Modifications to the Press—Schechter theory proposed in fs = s N XP {735 &)

* E-mail:kurbatov@inasan.ru

Sheth & Tormen (1999) suggested a correction for this foamul
which gives better fit to theiV-body simulations data but we will

1 Please excuse the author for the reference list is far frampéeteness. use .the Ca.no.nical variant for clarity. Mass PO, is Obtaine.d
There are over 2000 citations of Press & Schechter (197408 At's hard by differentiationF’ by mass through the mass-dependent variance.

to analyse all of them.

(© 0000 RAS

Both, threshold overdensity and variance depend on timehéda



2 E.P Kurbatov

cosmological model, power spectrum of fluctuations, andehofi
collapsing lumps. Defining these dependencies we get antevol
of the mass spectrum of haloes.

The value for threshold overdensity is commonly assumed to
be1.69; it is obtained as a critical overdensity for collapse by-con
sidering the growth, turnaround and collapse of a uniforimesip
cal overdense region (Bardeen et al. 1986; Lacey & Cole 1983)
general it depends on cosmological density parameters ¢Eake
1996) but remains close to the conventional. Paramktean be
interpreted not only as collapse condition but also as a enddt
mass of the 'nonlinear’ structures. Since the variancedsibno-
tonic function on mass, PDF reaches its maximum value at the
unique mass which sense is the characteristic or nonlin@asm
m.. The extremum point for PDFgs and f,, satisfies equation
3S5(m.) = 62. Onthe other hand, in evolved systems the character-
istic mass is the mass of a most frequent occurrence. As@&étd
et al. (1983) noted, the variance of the density grows rgpédl
this mass and crosses unity, So we can reinterpas an overden-
sity in objects just evolved to the nonlinear amplitude. s we
assign threshold overdensity to a value marking the cheniatit
mass (qualitatively the same was mentioned by Jain & Bargeh
(1994)),

5, =V3~1.73. 3

This value is quite close to commonly uséd9. Later we will
assume Eg. 3 against the conventional.

Connection of the variance to the mass of the collapsed-struc
tures is implemented by filtering the local variance of dignfiic-
tuations with some kernel, which is considered isotropiiallys
A space scale of the kernel, by-turn, is bound to the masgeSin
fluctuations’ amplitudes were small at early times, the nigds
simplym = (47/3) Qmpo R}, whereR; is the filtering scale, and
Qmpo is the mean matter density in the Universe. Denptthe
random overdensity field. The filtered one in the real space is

4)

whereWV is the filter; the filtering scalé?s is bound toRw with
some filter-dependent relation, see Sect. 2.3. For the gamiom
field the variance is

s={((7T- ")

o /dskdsk/W(k,Rw) W(K,Rw) K(t, k, k) ,

7(t,7‘,Rw) = /dST/W(T - 'r'/,Rw) flt, ",

®)

whereW is the Fourier image of the filtering kerndi(¢, k, k') =
(f(t,k) f(t, k")) is the correlation function for Fourier modes of
unsmoothed field; the proportionality sign means free chaisa
normalization constant of the Fourier transformation. Tikkl is
often assumed statistically uniform, isotropic, havingozenean
and independing Fourier modes, i.e. Gaussian. This rediees
variance to depending only on isotropic power spectfim mo-

mentum space:
(6)

where K(t,k, k') = ép(k — k') P(t, k), i.e. modes are delta-
correlated. With regard to general models, Eq. 5, if nonsSaunity
has form of the statistical constraints applied to the Gandgeld,
then the correlation function can be obtained completebmfr
power spectrum. Derivation of the correlation functiontirstcase
will be done in next Subsection.

S o /d3k W?(k, Rw) P(t,k) ,

represented usually in a form of the primeordial power spetof
the given spectral index modified with transfer functiofi™:

P(k) x k"T?(k) . 7

As an example of the transfer function can be mentioned the ap
proximation of Bardeen et al. (1986):
In(1 + 2.34¢)
2.34q
% [1 +3.89q + (16.1g)* + (5.469)" + (6.74¢)*] """,

T (k) =

®)

whereq = k/T, andT is the shape parameter. Transfer function
can also be computed numerically as the result of the ewoluf
perturbations in an early times, e.g. bymBFAST code (Seljak &
Zaldarriaga 1996). The unconstrained variance calculfatethis
power spectrum then must be normalized to the given value of
o3 = S(Ry = 8 h~'Mpg).

Calculations for evolution of the power spectrum is a difficu
task even in the lowest orders of the perturbation seriesoapp.
For Gaussian field these calculations were completed just tp
loop corrections, i.e. to 2-nd order of accuracy in powercspen
(Jain & Bertschinger 1994), or up to 3-nd order in expression
filtered statistical momenta (Scoccimarro 1998). In a n@u&3ian
case the task became more complicated since the field is rwt ze
mean, and the same precision order requires much moreafgegr
get (Crocce & Scoccimarro 2006b,a). In our theory we wiltiies
ourselves to a purely linear evolution, so the overdensity be
proportional to the linear growth factdp(t):

f(t)=D() fy,
K(t) = D*(t) K1, ,

P(t) = D*(t) P,

S(t) = D*(t) Sv , @)

whereL index means values linearly evolved to the present time
with unity growth factor.

The linear evolution of perturbations settled on a largdesca
host overdensity (of both signs) can be represented in arliper-
turbation theory for the certain cosmology. Parametersuoh s
pseudo-cosmological model determined by the mean derfditye o
host: an overdensed background corresponds to higher ottbe
matter density parameter in the pseudo-cosmology thareittti-
verse, and vise versa. In the overdense host the pertunbatiil
attain higher amplitudes than in global cosmology, in thdarn
dense one the last will be lower. Singeis the only factor provid-
ing the time dependency in the class of the Press—Schettiater t
ories, the bigger values of it will be in charge of the greatge
of objects population. As the population evolves mainly bgron
ing of the objects, there is a natural connection betweerhtise
overdensity and the intensity of a merging process for albds
of different mass. At this step we should obtain the biasofafir
the halo number.

The result of the theory should be the number density of
objects of a given mass in a predefined host halo, and also sec-
ondary values like cumulative mass of a population, etc.iuma-
ber density per unit mass interval is usually define@as /0m =
Qmpo fm /m. In this definition is assumed the spatial homogenity
of the distribution, i.e. there is no spatial structure diesthe host
perturbation. It might not be so in a virialized host halo enénthe
merger process and therefore the mass function can beeaffbyt
the sharp features of the distribution. This may lead to asreag-
regation of sub-haloes in space and, hence, to rediswibafi the
mass spectrum of sub-haloes. We assume this feature candse mo

The power spectrum itself depends on the cosmology and is elled by a mass-dependent factay,, so the general definition for

(© 0000 RAS, MNRASDOQ, 1-10



Dark halo mass function in a prescribed spherical host perturbation 3

the number density is

QII]
= Po W fm -

m

Onm
om
Factorw,, obviously makes a contribution to the bias factor. Other
distribution functions should be represented similarly.

In this work theACDM model is used with following param-
eters:Qx = 0.7, Qm = 0.3, os = 0.9, spectral index for power
spectrum is» = 1. The transfer function was computed using the
CMBFAST code of Seljak & Zaldarriaga (1996). The units adopted
areh™'Mg for massh~Mpc for length and hHioo) ™! for time.

(10)

2.2 Constrained correlation function for modes

We represent the host halo in terms of a functional congtr&im a
random field of the overdensity perturbations. In our ta'skcion-
venient to make calculations using spherical modes decsitipo
To obtain the correlation function for amplitudes of the eytal
modes we will use the approach of Hoffman & Ribak (1992), Whic
was proposed by them for plane waves.

The field f(») = f(r,0, ¢) can be transformed to spherical
modes via the transformation

fr) = @ > / e ko () Vi (0, &) Fom (), (10)

=0 m=—1

wherej; is the radial Bessel's function¥;,, is the spherical func-
tions with normalizatiorfh dQ Y}, Yiim = 611/ 6mm: - Amplitude
of spherical decomposition of the field, or image, is

ﬁm(k):\/g /0 ” dr ki (k) 7{ A0V (0,0)f(r) . (12)

Transformation for radially symmetric fielH (r) consists of only
the isotropic modes:

Him (k) = 6100moH(K) , (13)
whered;; is the Kronecker’s delta, and
H(k) = 4r \/g/ drr’kjo(kr)H(r) , (14)
0
while
H(r) = L \/g/oo dk kjo (kr)H (k) (15)
= 4ﬂ- - ) J0 .

Let us write constrains in a form of linear functionals fixing
a value of the convolved field at a point. Since the local extne
is the only constraint we use, we adopt the radially symmetn-
straining kernel, and place the point at origin. Using tlisditions,
the functional fora-th constraint can be written in form

Caolf] = /d3r Hy(r) f(r) = /000 dk I:I(Q)(k‘)foo(k‘) . (16)

Constraints itself are fixed by assigning values to thesetiomals.
Actually kernels can depend on a set of parameters chaizoter
a host halo, like a space scale or some momenta. We will nog wri
them as arguments for shortness till next Subsection.

Following Hoffman & Ribak (1991, 1992) it can be showed
that the pair correlation function for the constrained emsle of
modes is

Eintrs (b, K) = (Fon (B) s (K |{C})

= ((fim®) = F5 ) (Firme ) = TS0 D))+ 2D)
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where the averaging performed over the unconstrained dileem
Here

(k) = 0100:m0Q5 Calf1Z () (K) (18)
is the image of the mean constrained field but with non-fixedfu

tionals C.[f]; é(a)(k) is the image of cross-correlation function
between the field and-th constraint:

Bw(r) = ([Calfl) s S@k) = He (k) P(R);  (19)
andQ;é is the inversion of the constraints correlation matrix:

Qus = (Cal1 Calf1) = [ b B0 Fy (K) P . (20)

The unconstrained field is delta-correlated, which means
(Fum () furm (K')) = G0 85 (k= k') P(K) ,

wheredg) is the one-dimensional Dirac’s delta-function. Our goal
is to find the variance of the constrained field, i.e. the fakwwlu-
tion of a kind Eq. 5 for correlation functiof;,,,;/ ./ (k, k) with a
filter . It's easy to show that the only part of last meaning is

(21)

K(k, k') =65 (k = k') P(k) = Q25 B (k) Egs) (K) . (22)
The filtered variance can finally be expressed as
S = /dkdk’W(k,Rw)W(k’,Rw)K(k,k’). (23)

Note that unfiltered convolution implies using the image for
three-dimensional Dirac’s delta-function as a filtég)(k) =
k/(2'%x). In general, the filter can be written in the form
W(k, Rw) = 6% (k) w(kRw), wherew(0) = 1, w(co) = 0,
and0 < |w| < 1. The same applies to the constraining kernel. This
is the result of the definition for unconstrained correlakx. 21,
where the one-dimensional Dirac’s delta-function is used's set
a single constraint whose kernel is the filtering kernel ,sdsal the
constraint’s parameter is a space sdaje The variance is then

S = /dkH(k,Rw,Rw)

N {1_ W (k,Ru) [dk'TI(K, Rw, Ru)
W (k, Rw) [ dk"TI(k"”, Ru, Ru)| ’

whereIl(k, Rw, Ru) = W (k, Rw) W (k, Ru) P(k). It is obvi-
ous that the expression in braces tend to the values closeitio u
whenRw < Ry or Rw > Rpu, and vanish ifRw = Rpu. There-
fore, we can expect, in general, that the abundance of tloesal
vanishes if halo mass tends to the mass of the host pertombati
and came closer to its unconstrained value if halo mass éfets
from the host mass. It is not surprising.
The spatial halo correlation function is

(24)

&(r) = (f(0)f(r)|[{Ca}) (25)
—Vir Y / k3D (k)i (kr) i (0, )
lm (26)

x /dk’ 5 (k') Kimoo (k, k') .

For a spherically symmetric consraints it's image is

E(k) = 5 (k) P(K) — Q) Eay (K) / Ak’ 58 () Es) (K)
27)

Time dependence of the variance and correlation function is
determined by assuming linear growth, Eq. 9, i.e. by renbzmaa
tion of the variance with thé@? factor (see Subsection 2.4).
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2.3 Constraining and filtering kernels

Let H(r) be the kernel for the functional constraining peak (or dip)
amplitude of a field at origin. Besides amplitude, the shapele
constrained also via derivations of the kernel:

dH((r d*H(r
H1stdery (1) = d7(= ) ; Té)

and so on. Using reccurence relations for radial functignand

their derivations it’s easy to show that constraints for-odder ra-

dial derivations turn to zero because of symmetry. Imageshi®

second and fourth derivations are expressed as

K - ~ E* -

-3 H(k), Hundey(k) = = H(k) .
Filtering kernels generally accepted to use are k-sharp; To

hat and Gaussian:

H(an deriy) (T) = (28)

H 2nd deriy (k) = (29)

— k-sharp
_ 1 gi(r/Rw)
Wis(r, Bow) = 2rR3,  r/Rw (30)
Wis (k, Rw) = 6 (k) 0(1 — kRw) ; (31)
— Top-hat
VVTH(’/’7 RW) = W 9(1 — T/RW) , (32)
A%
Worn (k. Bw) = 59 (k) 3 L0200 (33)
kRw
— Gaussian
_ 1 —r?/(2RYy) 34
WG(TyRW)—We ) (34)
Va(k, Rw) = 6@ (k) e ¥ R /2, 35
W 5](33) k2RZ%, /2

wheres) (k) = k/(2'/?x) is the image of the three-dimensional
Dirac’s delta-function. Consider one of these kernels ascitn-
straining kernel which depends on only the single parameter
space scal&y;. Volume integral for any of these filters is normal-
ized to unity, although it is not necessary for constrairiagels
since any factor will be reduced in Eq. 22. However, this raliza-
tion allows for clear physical treatment of constraints. &ample,
the mass of the host perturbation with overdenif§’ () inside a
sphere of radius is

M(<r)= /dgr' p(r 01 —r'/r) (36)

Am
3

Qmpor® <1+/ dk A (k) WTH(k,r)) ,
0
@37)

where the second term in braces is the overdensity averagbd i
volume of the host. The host overdensity profile can be obthin
using Eq. 18 for the fixed values of the constraining funalen
Cq, then the averaged one will be
A= Q;;CQ /dk Wru(k, ) Hgy(k, Ru) P(k) . (38)
Relation between the characteristic scBl¢ and filtering ra-
dius Ry, as well as between the scalg; and actual constraining
radius Ry, is determined by the choise of the kernel. As Bardeen
et al. (1986) noted, the characteristic scale for the Tdpfia
ter is not the actual space scale which is filtered out if werint
ested in the mass enclosed inside, but connected to iRvia=

0.64Rw . For this ratio and specified power spectrum normaliza-
tion, os = 0.9, the nonlinear mass for unconstrained power spec-
trum ism. ~ 3 x 10**h~'Mg. This value is used to adjust char-
acteristic scales for k-sharp and Gaussian kernels. Asult rédse
ratio for k-sharp kernel as well as GaussiaRis= 1.4Rw. Ra-
tio for the constraining scale is assumed the same, acgbydio
the kernel used. The constraining mass is defined similarthe
filtered one:My, = (47/3) QmpoR;.

For the single constraint withh = Wy we can see that the
value of the constraining functional is bound to the masscated
with the host perturbation and to the averaged overdensity:

- 3Mw
74ﬂ'QmpoRf’)

(note the remark on constraining scale made in the previate p
graph). This quantity carries the growth factor of the hastyrba-
tion for a given epoch, as a multiplier.

Choice of the constraining kernel as well as filtering oneois n
unique and motivated by convenience usually. Top-hat kesre
natural choice for a mass constraint as it has no 'tails’ enréal
space. On the other hand the k-sharp filter suits better fourex
sion set formalism (Bond et al. 1991). Also k-sharp kernetgi
simple expressions in momentum space. Indeed, consideirthe
gle constraint withd = W = Wxs. DenotingS(® an uncon-
strained variance (Eq. 6) we get the trivial relation for tsibes
(Rw < Rmu):

S =59Rw) - SO(Rny) . (40)

Something similar should take place for other kernels caign in

a case of a larger number of constraints it might not be soigA\tlF

is presented the functio$i, (m) for different kernels and different
numbers of constraints. The models were computed for the hos
halo mass\, = 10'2A~'Mg. As we see the Top-hat kernel lead
to the variance stable with respect to adding more conssrahtso

the k-sharp has the same property for masses My, but it gives
oscillations for greater masses, seemingly due to odoitlatin the
real space. In the case of the Gaussian filter we see a moralogi
behaviour: the increase in the number of statistical cairgs lead

to the decrease in the variance in total. Note, since thetifumc
St (m) is monotonically decreases, the lesser values of the vaian
cause the lesser amount of sub-haloes of associated mi#gsgsh
mass PDF to the lower masses while the total amount of maps kee
unchanged and equals id;,. Nevertheless, the adopting of Top-
hat kernel instead of k-sharp, or Gaussian instead of Topehd

to effectively lower host mass and to younger sub-halo paijon.
Applying different kernels for constraint and filter is pedily not

a good idea since kernels may interfere giving oscillationseal
space.

A(Ry) =C (39)

2.4 Linear growing of perturbations

A linear evolution law for density perturbations is knowrr #n

arbitrary uniform and isotropic cosmology model (Bildhaeeal.

1992). It depends on global density parameters of the Usevand
gives the amplitude of decaying or growing modes as a funaifo
scale factor or redshift. The solution for a growing mode is

po _ 3 a”*?x(a) / db Lkl (41)
2 0 x3(b)
where
1/2
x(a) = (1 + g_k a+ SA a3) . (42)

© 0000 RAS, MNRASDOQ, 1-10
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Figure 1. Linearly evolved variance calculated for various numbecani-
straints, from top to bottom: one (just kernel), two (theri@rand its 2-
nd derivation) and three (the kernel, its 2-nd & 4-th defoat). Host halo
mass isl0'2h~ 1M, . Kernels used are: k-sharp (solid line), Top-hat (long-
dashed) and Gaussian (short-dashed). Upper dotted lime isitonstrained
variance, and horizontal dotted line marks the level of meslrity, S;, = 1.
As seen, the Top-hat kernel gives variance which is invat@the change
of the number of constraints. For k-sharp kernel this priypsttrue only for
masses lesser than host. In both cases, the nonlinear nudssder of the
host halo mass. Using Gaussian kernel leads to the sulastdefiendence
of the variance on the constraints number.

The evolution of perturbations inside an overdense or under
dense region can be examined in a pseudo-cosmologicalorgtat
if parameters of such notation are chosen appropriatelghles
1993). Namely, the need to set the density of the matter arld da
energy to corresponding values in a host halo or void, thetihelo
integral for growth factor using the new density parameters

Q= (1+28)
Q) =M
Q=1-Q) —

(43)

Growth factor calculated in thise case we will dendle Here A
is the overdensity of a host perturbation linearly evolvedhe
present day, i.e. using the notation of Eq. 9, it can be writte
D (z = 0)AL. Itis natural to bind this value to the overdensity

(© 0000 RAS, MNRASDOQ, 1-10
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Figure 2. Linear growth factor as the function of scale factor. Pértipns
are settled on a background with different overdendityThe caseA = 0

corresponds to the unperturbed background. The solidditieiupper limit
of the dependence whdn(z = 0) = 5 (see text).

averaged over the volume of the host perturbation, Eq. 38gha
A = A(Ry), understanding the last as evolved to the present time.
Substituting these definitions into equations above we ¢ af
growth on the given background. Properties of solutionsfalre
lowing. If the linear overdensity of the host is positiveeththe
amplitude will grow faster turning to a greater value at preégime.
However, an arbitrarily large value & can lead to only finite lin-
ear amplitude at present time with limiting valdg0) = 5 (Bild-
hauer et al. 1992, eq. 21 fér,, > 1). Otherwise, the arbitrarily
small value of the linear overdensity lead to smaller valfeam-
plitude at present time, giving(0) = 0 as a limiting case for
A=-1.

3 APPLICATIONS

Our theory involves several parameters in addition to thogke
original Press—Schechter approach. The parameters aspatial
scale of constraint®;, or associated masd;,, and the mean over-
densityA. Constraining kernel can also be chosen fairly free. As
we seen in Subsec. 2.3 the, different kernels with the sarae sp
tial scale effectively correspond to the different masdab® host
halo, since they give different rates of decrease of thewag with
spatial scale. Such an effective mass or scale can be usedi-to ¢
brateR), for various kernels. The effective value of this parameter
can be calculated as the spatial momentun\&6P () profile or

so. Other way is to bind the effective scale to the scale wbane
strained variance crosses unity. Seems reasonable toaus®tiel
with H = W = Wy as a reference because the relations of the
kind Eq. 39 looks naturally in the real space for this cas¢hérfol-
lowing examples of applications we'll use the Top-hat kébwth

for filter and for constraints.

We need to check the correctness of our theory for various
types of the real objects. As was mentioned in Subsec. 2¢l, th
structure of the host halo may affect the mass function oftle
halo population. This impact should take place through tlasan
segregation and to be reflected in the sub-halo merging gsoce
It is reliably enough to assume that such situation occurgrin
alized haloes only. Hence, the knowingly non-virializedistures
such as voids and friable superclusters, having low oveities
(A < 100, see Lacey & Cole (1993)), are free from this effect
of the 'structure biasing’. Last means that for these objdutw,,
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factor in Eq. 10 equals to unity and number density PDF besome

Onm  Qm oS

S 2 e fm= || fs (44)

om m om

wherefs from Eqg. 2. The cumulative distribution function is
My, , Ms

N(>m) = /m am' 2 g (45)

where M, is the total mass of an area of interest, i.e. of the
sub-area of a supercluster or void. This value can be bound to
the observed scal®; at the given redshift via relatiod/s
(47/3) Qmpo RE(1 + A). Without resorting to calculations we can
find qualitative properties of these distributions. Sirfoe growth
factor is limited for all possible values of the host oversign and
the variance depends on the mass continuously (if consiggler-
nels are continuous), there are the limiting distributiowtiion for
given constraining scal®&), or M, corresponding to the limit of
the evolution of sub-haloes population when the high-masisoé
the PDF is the heaviest possible. Other limiting propertiésiow-
mass end of the distribution where PDF tends to the uncanstta
law which is rescaled accordingly to the growth factor vatunel
independent of\f},.

Below we will very briefly touch three possible applicatiafs
the theory: the mass function in superclusters and alsceindrds,
and the bias relation for haloes in non-virialized hosts phimary
goal here to show the dependence of the distribution funstan
the host overdensity.

3.1 Superclusters

Superclusters exhibit a very broad distribution of sizesfit0h ~*
Mpc extending up td50h~! Mpc, and mass up to0'¢A M.
These objects form mainly in shells and filaments, althoughpis
are also observed. Clusters of galaxies are the chardittedospo-
nents of superclusters. The typical dynamical mass of ficsters
is about10™® — 10"*R~'Mg. A number of rich clusters in super-
cluster can vary from several to over ten, and their massiérac
can be aboui0 per cent (Bahcall 1999).

Superclusters can be characterized with density enhamteme
factor which is the number of objects (clusters or galaxieghe
supercluster related to the mean number of objects in the satn
ume (Bahcall & Soneira 1984). On the theoretical base thifac
can be represented as the relation

N(< m)
NO) (< m)

wherem is the lowest mass of objects we are counting. Here the Eq.
45 is used with\l, = My, and the factott + A is applied to trans-
form the Lagrange volume of the evolved host perturbatiotinéo
unperturbed Eulerian one. The density enhancement faetpsk
information about total mass or radius and depth of the herstip
bation. On the Fig. 3 this function is presented idf, = 10'® and
10'°A~'Mg, and for various overdensity values. In the low-mass
limit (m < 10'°R~'M, which corresponds to the dwarf galaxies)
the density enhancement factor reduces to dependendeonty,

DO

E= (1+73), (46)

F =~

(1+4), (47)

so measuring? by counting objects of small masses we can re-
store profile of the host overdensity. However, this may Iffecdit
since the number of dwarf galaxies in a superscuster cambeatel
hundreds of thousands, and it may be biased by a sub-chcstémi
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Figure 3. Density enhancement factor as the function of the lowestsili
mass used for counting, and the host overdensity. Top pafek= M), =
10'5h~1Mg. Bottom panel:Ms = My, = 10'6h~1Mq. As seen, there
is no dependense of the factor on the host halo mass or onwiesticub-
halo mass for small values of last, although the dependenstang for
moderate and high masses. In theory with unconstrainedtatatwe have
E =1 (not shown).

order to obtain the density profile by counting objects of erate
masses the following way might be used. Considering an mxter
radius of a superclusteks, count the number and the density en-
hancement factor of objects having mass greater than solme. va
Then solve Eqgs 45 and 46 assumihfy corresponding tdRs (see
the prevoius Subsec.). Solving equations we get the meadeave
sity A and the lowest mass used previously for counting, i.e. it
is possible to calibrate the assumed lowest mass. The paame
found can be used further for smaller radii.

Example of cumulative mass functions for the hadt =
10*h~1M, is shown at Fig. 4. We see that the mass of the most
massive sub-halo (levéf = 1) increases several times when over-
density changes fromito 20 but does not become higher thar20
per cent of the mass of host. On these figures and on the graph of
the cumulative mass fraction of sub-population (Fig. Spsrshow
the distribution of sub-halo masses slides toward the higbsrend
when increasing host overdensity. This bias will be exachimere
detailed in Subsec. 3.3.

3.2 Voids

Voids are formed from an underdensed regions by ousting &#te m
ter out and building the cosmological walls herewith. Voate
characterized by the typical size of tens megaparsecs atater
shape (Foster & Nelson 2009). According to simulations phres-
density of the matter inside a void can be as low-8595 at Hubble
time (van de Weygaert & van Kampen 1993).

(© 0000 RAS, MNRASDOQ, 1-10
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Figure 4. Cumulative distribution functions for sub-haloes insidaast.
Top panel:Ms = M; = 10'°h~1Mg. Bottom panel:Ms = M, =
1016h=IMg. The increment of the overdensity induces the redistidiouti
of the mass function to higher mass values. Inset shows the sgaphs
zoomed in the high-mass end. The mass function for uncaonsttaase is
very close to the casl = 0, as expected.

10%6

m [h~ M)

Figure 5. Cumulative distribution function of the mass fraction obsu
haloes inside a host/s = My, = 10'8h~1M, for various linear over-
densities. Designations of overdensities by lines areahgesas in Fig. 4.

Pustilnik & Tepliakova (2011) showed that galaxies in the
Lynx-Cancer void can form groups and filaments. So the sit-ha

population in voids is not spatially smooth but undergoestelr-
ing. The distribution functions of sub-halo populationiitesvoids
are represented on Figs. 4, 5 and 640k —0.75.

Despite the fact that cosmological voids don't virializeyh

become nonlinear and the void’s boundaries become wallheso

total amount of mass occupied by the structure distingdisi®

a void is by few orders smaller than mass of the host perturba-
tion. As the mean overdensity in a void is negative, the saib-h

(© 0000 RAS, MNRASDOQ, 1-10
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Figure 6. Distribution function of the number density of sub-haloes i
side a host. Top panelM;, = 10°h~'Mg. Bottom panel: M, =
10'%h~1M. Designations of overdensities by lines are the same as in
Fig. 4.

population should be younger comparing to the superclustéey
the unconstrained case, i.e. the mass function should hechéa
the low-mass end. For these reasons the deficit of massia&-gal
ies should be observed leading to sharper decay of the lemino
ity function for galaxies of moderate and high masses. Thay m
be seen clearer on the number density distribution funcfag.

6. Comparing to the original Press—Schechter theory withon-
straints (dotted line) the PDF inside the void (long-dasttet line)
has more sharp decline, so the differents become signiffoant
m > 10"2h~'Mg. Pustilnik & Tepliakova (2011) didn’t observe
this effect for their Lynx-Cancer void galaxies sample. sThan
be explained by the fact that the sample is limited by the -abso
lute magnitude~ —18 which corresponds to dwarf galaxies hav-
ing photometric masaf>s ~ 10'°Mg, (Karachentsev et al. 2004,
the Hubble parameter s = 0.72), so the halo mass doesn't ex-
ceed10'' M. This mass limit reveals the trivial behaviour of the
low-mass end of mass function (Fig. 6). To distinguish ttefees
our theory brings, the galaxies with absolute magnitudselethan
—20 or Mas > 10" Mg should be observed. For example, if the
host perturbation has the mass of ordér, ~ 10'**A~!Mg and
the mean overdensity of the voidds = —0.75 inside the sphere
R, = 15h~" Mpc (see simulations of van de Weygaert & van Kam-
pen (1993)), then the enclosed masdds ~ 10'*h~1Mg. Such
void should contain a few haloes of massl0*2h ™M,

3.3 Bias factor

Galaxy biasing is known effect when the bright galaxies temd
form near the high density peaks (Bardeen et al. 1986). |dékhie
matter section this property reflects the fact that denskp are
more clustered than underlying mass (Mo & White 1996). Ireoth
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words, the dark haloes trace the features of the backgroand d
sity field. Halo biasing was examined theoretically first tr@een

et al. (1986). On base of the Press—Schechter theory thevbigs
obtained first by Mo & White (1996) as a relation between cor-
relation functions of haloes and mass. Their expressiontixas

extended by Sheth & Tormen (1999), revised by Jing (1998) and <

Porciani et al. (1999), as well adjusted with numerical Nipbece-
sults.

In approach of Sheth & Tormen (1999) the Eulerian bias factor
was defined as the linear part of the relative overabundahtteso
halo number inside volum®& containing given masa/ from the
mean halo number in the same volume:

N(m|M,V)
nO (m)V

S = —1="A+ 0B, (48)
Present day value of the factor obtained in the Press—Siehebk-

ory is

s DO

BPS _ 0 D7
0
D(O)Sﬁ) O

=1+ (49)

Jing (1998) and Porciani et al. (1999) faced the good agretbee
tween this function and accurate numerical measuremeniasrfe
halo masses, but found a departure when the mass of the halo
small; the model of Mo and White underestimated biasingdaelr
mass limit leading to a constant value of the bias factor evhil-
merical measurements revealed a rising of it with mass deurg.

10000 ; ; x x x
T A=20
1000 F T A=3 1
,,,,,,, O
100 F A=0 .
A=-075
by Mo & White
10 + .
e .
0.1 * *

1013 1014 1015 1016

m [h1Mg]

1010 101 1012

Figure 7. Present day Eulerian bias factor fdf;, = 10'62~1Mg and

various host overdensities. It is seen, the younger subgwulation A is

lower), the more it is biased for the lower masses of subdsalDotted line
shows the bias factor by Mo & White (1996).

4 DISCUSSION

Comparing with the original Press—Schechter theory, oeorti-
_cal model has additional parameters: mean overdensityedfidist
ISrerturbationA, its spatial scaleRy,, constraining kerneH defin-

ing profile of the host perturbation, and its spatial momeftita

first of which isA. From the original theory, our approach is for-
mally characterized in using of different mass—varianagcfion

The bias factor of a kind Eq. 49 depends on mass of the halo 544 assuming some different background cosmology. Theadby

but not on the background. In the previous numerical worlks th
procedure of calculating bias was constructed in such a haty t
the factor was determined being averaged on a big enoughuzomp
tational volume. Using formulation of the mass functiongosed

in this paper we can estimate the biasing effect stipulayedrity

the host halo mass and overdensity. In a manner Eq. 48 thiveela
overabundance of the halo number can be written as

fm(m7 Mh7 A)

5}1}1 = 7()?) (m)

(1+A)-1, (50)

where the volume tranformation factor+ A is considered, and
'zero’ index means the analogous values from the unconstai
theory. Eulerian bias factor then defined as

ddnn
dA

b

(51)

In this formulation both the dynamical age of the sub-halpyta-
tion (determined by host overdensify) and power spectrum con-
straints (determined by host maks,) affect the bias. On the Fig. 7
presented the bias factor faif;, = 10'°4~ Mg, and various host
overdensities. The more rarefied background hosts younger s
halo population which becomes more biased in a lower maéses.
the same time the dense background demonstrates very $tirong
asing in a high masses comparing to the approximating famul
of Mo & White. This discrepancy may be cleaned by the follow-
ing way. The large scale structures of different overdersitave
the different volume filling factor in the Universe. Namelypids
having negative overdensity occupy the major part of thevéhsie
while the walls, filaments and other structures having pasaver-
density occupy the volume with factor of order few per ce@tn-
sidering this it may be possible to match the rising low-niasi

of the bias (Jing 1998) while to attenuate an exponentiaitirof
the bias factor in the high-mass limit.

the statistics it gives is spatially uniform. In additiorgither host
perturbation profile nor its overdensity changes the mergiro-
cess of the sub-halo population. That is, our theory in itsent
form is not able to model properly the virialized haloes, éajoes
of galaxies and galaxy clusters. As was mentioned abovejiibé
ization process may result in mass segregation which altesrihe
merger rates for low- and-high-mass sub-haloes. The pBdras
more significant influence on the high-mass end of the diginh
function. This effect can be named the 'structure biasing'.
Correction to the distribution functions accounting to the
structure biasing may have form of the multiplier, like in.Ed,
depending on parameters noted above, and also on sub-haf ma
Itis possible to estimate the high-mass limit of this muikipusing
virial considerations. In general case the spatial digtidim of the
density per unit mass interval is

Opm
om
wherew = w(r,m) is a factor responding for the structure bias.

Cumulative mass of a sub-halo population inside a sphése

T My, /
M(<r) = 47r/ dr’ r’2/ dpm 2Pmlr’sm)
0 o om

r/Ry My
= 3Mh/ dxx2/ dmwfm ,
0 0

wherez = r /Ry, is introduced. Thev factor depends on the viri-
alization process and reflects as density profile of a hostdmthe
sub-haloes mass segregation inside it. Without going ietails

of virialization we can denote that sub-haloes of high masate
naturally near the centre while low-mass haloes occupy titiece
host volume. The meaning af then might be the relative volume
filled by sub-haloes of a given mass. The factor should dserea
with sub-halo mass increasing, from a constant value ofrandigy

or greater, form < My, to a somewhat small value in the limit

Qmp()wfm ) (52)

(53)

© 0000 RAS, MNRASDOQ, 1-10
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m — My,. The detailed structure of the high mass limit can be ex-
amined as follows. For definiteness let the virialized hado thas
NFW density profile (Navarro et al. 1997):

A
PNFW = ( po (54)

1+7/rs)2r/rs’

wherers is the scale radius\. is the characteristic overdensity.
The mass profile with it's Taylor expansion is

3A /7S
MNFW(< T') = M}, W (111(1 —+ 7’/7"5) — TT/TS)
9 3 (55)
g BB (1T (T
= 0008 \ 202 ) )

where ¢ is the concentration factor, antlf;, has the meaning
of the mass inside a sphere with overdengity, i.e. M,, =
(47/3) 200007300, QmRy = 20073500, and 200 crs. In the
vicinity of the centre the heavy mass sub-haloes dominatedns
S0 we can assume mass profile of the population (Eq. 53) ahe of t
host halo (Eq. 55) matching there. Hence, the structurefa@er
can be expressed in the form

Ac wWm

= 56
w Qum 1/7s (56)
with the natural mass conservation claim

My,

/ dmwmfm =1. (57)
0

The mass patb,,, of the structure bias factor can be obtained using

virial theorem and equipartition. Gravitational potehtih NFW

halo is

~ 3A: GMy In(1+1/rs)
200c3 rire

Onrw = (58)

Ts

Write the virial theorem, neglecting an angular momentunthef
motion, then expand the virial at the lowest radii:

(B (o)

dr
Assuming equipartition at the lowest energies, we(gét o« m ™",
and hencér) o« m~'. Now definew,, as the volume factogy,,, o
(r)3, then

Tio

Ts

(59)

3

h

wmcx% form ~ M, . (60)
m

3

As we see, the structure bias factor reduces the amount afiveas
sub-haloes simultaneously increasing the amount of smal.o

5 CONCLUSION

We proposed the modification of the Press—Schechter theory o
dark halo clustering. The basis of modification is the usehef t
statistical constraints imposed on the initial gaussiandoan fluc-
tuations. Constraints has the form of the linear functisradlthe
fluctuations’ overdensity field. Kernels of constraintsadstine the
shape and, mainly, the spatial scale of the host perturbatidch
evolves to the supercluster or void. The resulting non-gjangy
of the random field leads to existing of the upper limit of maks
the sub-haloes formed inside the host perturbation. Aomgitof
the perturbation also determines the age of the sub-halolgtign
in the sense of the merging process.

Since the only spherical host perturbation is adopted i thi
paper we can not apply our theory to the variety of morphe@sgi

(© 0000 RAS, MNRASDOQ, 1-10
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of superclusters but to the lumps only. However, it is ndidift to
generalize the approach used here to an arbitrary shape bbgi
perturbation to the wall or filament.

Calculations show, the distribution function for sub-feso
with mass fractionl0~* — 10~ of the host and greater reveal de-
viations from the original Press—Schechter predictiortglendevi-
ations are negligible for lower masses so they can be e)qutessa
rescaling. If the host halo massi#, = 10'°h~ "M, and its over-
density iSA = 20, the deviations can be detected for sub-haloes
of the mass0'2h~ Mg, and greater. Assuming dark-to-light mass
relation bel0, such haloes correspond to the galaxies having ab-
solute magnitude-20 and brighter (Karachentsev et al. 2004). To
check the theory in a voids’ galaxies is necessary to cousd wiith
absolute magnitudes lesser tha@0. However, there may be only
a few such galaxies inside a tens-megaparsecs void. Alsg the-
ory, itis possible to recall the density profile of the sujssters.

Approach used in this paper does not allow to predict the dis-
tribution functions in virialized haloes. However, in piaws sec-
tion showed, the effect of the structure biasing should camp
sate the shift of the distribution function inside an overske halo
toward the high masses. This can explain the good fitting ef th
Press—Schechter function to a wide range of observatiothsian
merical experiments.
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