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ABSTRACT
Here proposed a modification of the Press–Schechter theory allowing for the presence of
a host density perturbation – host halo or void. The perturbation is accounted as statistical
constraints in a form of linear functionals of the random overdensity field. Deviation of the
background density within perturbation is interpreted in apseudo-cosmological sense. Result-
ing mass function of sub-haloes depends on the perturbationparameters: its mean overdensity,
spatial scale, and spatial momenta of higher orders. Applications of the theory to superclus-
ters, voids and bias problem are briefly observed. In its present form, the theory can describe
the clustering properties of sub-haloes inside a non-virialized host only. Possible fix of this
drawback is also discussed.
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1 INTRODUCTION

The theory of Press and Schechter originated as a semi-analytical
approach to describing the evolution of the mass function ofdark
haloes. Today this theory, together with its modifications,perhaps
the only one that, using some reservations, most closely matches
observations and numerical modeling for the widest mass range of
dark haloes, down to the resolution limit of numerical runs.The
reservations of the theory concerned to its main provisions:

– reinterpretation of halo merging as a random walk process al-
lowed to complete the construction of the theory with a mass func-
tion of Press and Schechter (Bond et al. 1991);

– Benson et al. (2005) showed, in the original theory the merger
rate, or the merger kernel, in terms of Smoluchowski equation, is
asymmetric function of mass which is flaw; the procedure to find a
symmetric kernel proposed by the authors can solve this issue;

– spherical collapse model used to get an overdensity threshold
seems too rough; instead were adopted the model of ellipsoidal col-
lapse (Monaco 1997a,b) and more general non-spherical collapse
model (Lee & Shandarin 1998).

Other reservations related to the environmental effects. Namely, to
account to the prescripted large-scale distribution of haloes or the
super-/sub-halo relation, were proposed models using considera-
tions about merger process (Mo & White 1996, on alternativessee
references therein), and also heuristic models (Peacock & Smith
2000).1 Modifications to the Press–Schechter theory proposed in

⋆ E-mail:kurbatov@inasan.ru
1 Please excuse the author for the reference list is far from completeness.
There are over 2000 citations of Press & Schechter (1974) in ADS, it’s hard
to analyse all of them.

this paper allow for the presence of a host density perturbation –
host halo or void, and give the mass function of sub-haloes depend-
ing on the perturbation parameters.

Below in 2nd Section we will describe a modification of the
Press–Schechter theory. In 3rd Section we consider applications of
the theory to superclusters and voids. Benefits and issues will be
discussed in 4th Section.

2 PRESS–SCHECHTER THEORY WITH STATISTICAL
CONSTRAINTS

2.1 Outline

We assume that the basic model of the theory is canonical, i.e. cu-
mulative distribution function for varianceS is set by the random
walk in overdensity space with variance acting as a ’time’, see Bond
et al. (1991) and Lacey & Cole (1993):

F (< S) = erfc

(

δ∗√
2S

)

, (1)

whereδ∗ is the threshold overdensity for the random process, a
barrier for trajectory to pierce to be associated with a collapsed
object. Corresponding differential probability distribution function
(PDF) is

fS =
∂F (< S)

∂S
=

δ∗√
2πS3

exp

(

− δ2∗
2S

)

. (2)

Sheth & Tormen (1999) suggested a correction for this formula
which gives better fit to theirN -body simulations data but we will
use the canonical variant for clarity. Mass PDF,fm, is obtained
by differentiationF by mass through the mass-dependent variance.
Both, threshold overdensity and variance depend on time viathe
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2 E. P. Kurbatov

cosmological model, power spectrum of fluctuations, and model of
collapsing lumps. Defining these dependencies we get an evolution
of the mass spectrum of haloes.

The value for threshold overdensity is commonly assumed to
be1.69; it is obtained as a critical overdensity for collapse by con-
sidering the growth, turnaround and collapse of a uniform spheri-
cal overdense region (Bardeen et al. 1986; Lacey & Cole 1993). In
general it depends on cosmological density parameters (Ekeet al.
1996) but remains close to the conventional. Parameterδ∗ can be
interpreted not only as collapse condition but also as a marker for
mass of the ’nonlinear’ structures. Since the variance is the mono-
tonic function on mass, PDF reaches its maximum value at the
unique mass which sense is the characteristic or nonlinear mass,
m∗. The extremum point for PDFsfS andfm satisfies equation
3S(m∗) = δ2∗. On the other hand, in evolved systems the character-
istic mass is the mass of a most frequent occurrence. As Zel’dovich
et al. (1983) noted, the variance of the density grows rapidly at
this mass and crosses unity, so we can reinterpetδ∗ as an overden-
sity in objects just evolved to the nonlinear amplitude. Forthis we
assign threshold overdensity to a value marking the characteristic
mass (qualitatively the same was mentioned by Jain & Bertschinger
(1994)),

δ∗ ≡
√
3 ≈ 1.73 . (3)

This value is quite close to commonly used1.69. Later we will
assume Eq. 3 against the conventional.

Connection of the variance to the mass of the collapsed struc-
tures is implemented by filtering the local variance of density fluc-
tuations with some kernel, which is considered isotropic usially.
A space scale of the kernel, by-turn, is bound to the mass. Since
fluctuations’ amplitudes were small at early times, the binding is
simplym = (4π/3) Ωmρ0R

3
f , whereRf is the filtering scale, and

Ωmρ0 is the mean matter density in the Universe. Denotef the
random overdensity field. The filtered one in the real space is

f(t, r, RW) =

∫

d3r′ W (r − r
′, RW) f(t, r′) , (4)

whereW is the filter; the filtering scaleRf is bound toRW with
some filter-dependent relation, see Sect. 2.3. For the givenrandom
field the variance is

S =
〈

(

f − 〈f〉
)2
〉

∝
∫

d3kd3k′ W̃ (k,RW) W̃ (k′, RW)K(t,k,k′) ,
(5)

whereW̃ is the Fourier image of the filtering kernel;K(t,k,k′) =
〈f̃(t,k) f̃(t,k′)〉 is the correlation function for Fourier modes of
unsmoothed field; the proportionality sign means free choose of a
normalization constant of the Fourier transformation. Thefield is
often assumed statistically uniform, isotropic, having zero mean
and independing Fourier modes, i.e. Gaussian. This reducesthe
variance to depending only on isotropic power spectrumP in mo-
mentum space:

S ∝
∫

d3k W̃ 2(k,RW)P (t, k) , (6)

whereK(t,k,k′) = δD(k − k
′)P (t, k), i.e. modes are delta-

correlated. With regard to general models, Eq. 5, if non-Gaussianity
has form of the statistical constraints applied to the Gaussian field,
then the correlation function can be obtained completely from
power spectrum. Derivation of the correlation function in this case
will be done in next Subsection.

The power spectrum itself depends on the cosmology and is

represented usually in a form of the primeordial power spectrum of
the given spectral indexn modified with transfer functionT :

P (k) ∝ knT 2(k) . (7)

As an example of the transfer function can be mentioned the ap-
proximation of Bardeen et al. (1986):

T (k) =
ln(1 + 2.34q)

2.34q

×
[

1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.74q)4
]−0.25

, (8)

whereq = k/Γ, andΓ is the shape parameter. Transfer function
can also be computed numerically as the result of the evolution of
perturbations in an early times, e.g. byCMBFAST code (Seljak &
Zaldarriaga 1996). The unconstrained variance calculatedfor this
power spectrum then must be normalized to the given value of
σ2
8 ≡ S(Rf = 8h−1Mpc).

Calculations for evolution of the power spectrum is a difficult
task even in the lowest orders of the perturbation series approach.
For Gaussian field these calculations were completed just upto 1-
loop corrections, i.e. to 2-nd order of accuracy in power spectrum
(Jain & Bertschinger 1994), or up to 3-nd order in expressions for
filtered statistical momenta (Scoccimarro 1998). In a non-Gaussian
case the task became more complicated since the field is not zero-
mean, and the same precision order requires much more integrals to
get (Crocce & Scoccimarro 2006b,a). In our theory we will restrict
ourselves to a purely linear evolution, so the overdensity will be
proportional to the linear growth factorD(t):

f(t) = D(t) fL , P (t) = D2(t)PL ,

K(t) = D2(t)KL , S(t) = D2(t)SL ,
(9)

whereL index means values linearly evolved to the present time
with unity growth factor.

The linear evolution of perturbations settled on a large scale
host overdensity (of both signs) can be represented in a linear per-
turbation theory for the certain cosmology. Parameters of such a
pseudo-cosmological model determined by the mean density of the
host: an overdensed background corresponds to higher valueof the
matter density parameter in the pseudo-cosmology than in the Uni-
verse, and vise versa. In the overdense host the perturbations will
attain higher amplitudes than in global cosmology, in the under-
dense one the last will be lower. SinceD is the only factor provid-
ing the time dependency in the class of the Press–Schechter the-
ories, the bigger values of it will be in charge of the greaterage
of objects population. As the population evolves mainly by merg-
ing of the objects, there is a natural connection between thehost
overdensity and the intensity of a merging process for sub-haloes
of different mass. At this step we should obtain the bias factor for
the halo number.

The result of the theory should be the number density of
objects of a given mass in a predefined host halo, and also sec-
ondary values like cumulative mass of a population, etc. Thenum-
ber density per unit mass interval is usually defined as∂nm/∂m =
Ωmρ0fm/m. In this definition is assumed the spatial homogenity
of the distribution, i.e. there is no spatial structure inside the host
perturbation. It might not be so in a virialized host halo, where the
merger process and therefore the mass function can be affected by
the sharp features of the distribution. This may lead to a mass seg-
regation of sub-haloes in space and, hence, to redistribution of the
mass spectrum of sub-haloes. We assume this feature can be mod-
elled by a mass-dependent factorωm, so the general definition for
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Dark halo mass function in a prescribed spherical host perturbation 3

the number density is

∂nm

∂m
=

Ωmρ0
m

ωmfm . (10)

Factorωm obviously makes a contribution to the bias factor. Other
distribution functions should be represented similarly.

In this work theΛCDM model is used with following param-
eters:ΩΛ = 0.7, Ωm = 0.3, σ8 = 0.9, spectral index for power
spectrum isn = 1. The transfer function was computed using the
CMBFAST code of Seljak & Zaldarriaga (1996). The units adopted
areh−1M⊙ for mass,h−1Mpc for length and(hH100)

−1 for time.

2.2 Constrained correlation function for modes

We represent the host halo in terms of a functional constraints for a
random field of the overdensity perturbations. In our task it’s con-
venient to make calculations using spherical modes decomposition.
To obtain the correlation function for amplitudes of the spherical
modes we will use the approach of Hoffman & Ribak (1992), which
was proposed by them for plane waves.

The fieldf(r) = f(r, θ, φ) can be transformed to spherical
modes via the transformation

f(r) =

√

2

π

∞
∑

l=0

l
∑

m=−l

∫

∞

0

dk kjl(kr)Ylm(θ, φ)f̃lm(k) , (11)

wherejl is the radial Bessel’s functions,Ylm is the spherical func-
tions with normalization

∮

4π
dΩY ∗

lmYl′m′ = δll′δmm′ . Amplitude
of spherical decomposition of the field, or image, is

f̃lm(k) =

√

2

π

∫

∞

0

dr r2kjl(kr)

∮

4π

dΩY ∗

lm(θ, φ)f(r) . (12)

Transformation for radially symmetric fieldH(r) consists of only
the isotropic modes:

H̃lm(k) = δl0δm0H̃(k) , (13)

whereδij is the Kronecker’s delta, and

H̃(k) =
√
4π

√

2

π

∫

∞

0

dr r2kj0(kr)H(r) , (14)

while

H(r) =
1√
4π

√

2

π

∫

∞

0

dk kj0(kr)H̃(k) . (15)

Let us write constrains in a form of linear functionals fixingup
a value of the convolved field at a point. Since the local extremum
is the only constraint we use, we adopt the radially symmetric con-
straining kernel, and place the point at origin. Using this conditions,
the functional forα-th constraint can be written in form

Cα[f ] =

∫

d3r H(α)(r) f(r) =

∫

∞

0

dk H̃(α)(k)f̃00(k) . (16)

Constraints itself are fixed by assigning values to these functionals.
Actually kernels can depend on a set of parameters characterizing
a host halo, like a space scale or some momenta. We will not write
them as arguments for shortness till next Subsection.

Following Hoffman & Ribak (1991, 1992) it can be showed
that the pair correlation function for the constrained ensemble of
modes is

Klml′m′(k, k′) =
〈

f̃lm(k)f̃l′m′ (k′)
∣

∣

∣{Cα}
〉

=
〈(

f̃lm(k)− f̃
(c)
lm (k)

)(

f̃l′m′(k′)− f̃
(c)

l′m′(k
′)
)〉

, (17)

where the averaging performed over the unconstrained ensemble.
Here

f̃
(c)
lm (k) = δl0δm0Q

−1
αβ Cα[f ] Ξ̃(β)(k) (18)

is the image of the mean constrained field but with non-fixed func-
tionalsCα[f ]; Ξ̃(α)(k) is the image of cross-correlation function
between the field andα-th constraint:

Ξ(α)(r) = 〈f Cα[f ]〉 , Ξ̃(α)(k) = H̃(α)(k)P (k) ; (19)

andQ−1
αβ is the inversion of the constraints correlation matrix:

Qαβ = 〈Cα[f ]Cβ[f ]〉 =
∫

dk H̃(α)(k) H̃(β)(k)P (k) . (20)

The unconstrained field is delta-correlated, which means

〈f̃lm(k) f̃l′m′(k′)〉 = δll′δmm′δ
(1)
D (k − k′)P (k) , (21)

whereδ(1)D is the one-dimensional Dirac’s delta-function. Our goal
is to find the variance of the constrained field, i.e. the full convolu-
tion of a kind Eq. 5 for correlation functionKlml′m′(k, k′) with a
filter W̃ . It’s easy to show that the only part of last meaning is

K(k, k′) = δ
(1)
D (k − k′)P (k)−Q−1

αβ Ξ̃(α)(k) Ξ̃(β)(k
′) . (22)

The filtered variance can finally be expressed as

S =

∫

dkdk′ W̃ (k,RW) W̃ (k′, RW)K(k, k′) . (23)

Note that unfiltered convolution implies using the image for
three-dimensional Dirac’s delta-function as a filter,δ̃

(3)
D (k) =

k/(21/2π). In general, the filter can be written in the form
W̃ (k,RW) = δ̃

(3)
D (k)w(kRW), wherew(0) = 1, w(∞) = 0,

and0 6 |w| 6 1. The same applies to the constraining kernel. This
is the result of the definition for unconstrained correlator, Eq. 21,
where the one-dimensional Dirac’s delta-function is used.Let’s set
a single constraint whose kernel is the filtering kernel also, and the
constraint’s parameter is a space scaleRH. The variance is then

S =

∫

dkΠ(k,RW, RW)

×
[

1− W̃ (k, RH)

W̃ (k,RW)

∫

dk′ Π(k′, RW, RH)
∫

dk′′ Π(k′′, RH, RH)

]

, (24)

whereΠ(k,RW, RH) = W̃ (k,RW) W̃ (k,RH)P (k). It is obvi-
ous that the expression in braces tend to the values close to unity
whenRW ≪ RH or RW ≫ RH, and vanish ifRW = RH. There-
fore, we can expect, in general, that the abundance of the haloes
vanishes if halo mass tends to the mass of the host perturbation,
and came closer to its unconstrained value if halo mass a lot differs
from the host mass. It is not surprising.

The spatial halo correlation function is

ξ(r) =
〈

f(0)f(r)
∣

∣{Cα}
〉

(25)

=
√
4π

∑

lm

∫

dk δ̃
(3)
D (k)jl(kr)Ylm(θ, φ)

×
∫

dk′ δ̃
(3)
D (k′)Klm00(k, k

′) .

(26)

For a spherically symmetric consraints it’s image is

ξ̃(k) = δ̃
(3)
D (k)P (k)−Q−1

αβ Ξ̃(α)(k)

∫

dk′ δ̃
(3)
D (k′) Ξ̃(β)(k

′) .

(27)

Time dependence of the variance and correlation function is
determined by assuming linear growth, Eq. 9, i.e. by renormaliza-
tion of the variance with theD2 factor (see Subsection 2.4).

c© 0000 RAS, MNRAS000, 1–10



4 E. P. Kurbatov

2.3 Constraining and filtering kernels

LetH(r) be the kernel for the functional constraining peak (or dip)
amplitude of a field at origin. Besides amplitude, the shape can be
constrained also via derivations of the kernel:

H(1st deriv)(r) =
dH(r)

dr
, H(2nd deriv)(r) =

d2H(r)

dr2
(28)

and so on. Using reccurence relations for radial functionsjl and
their derivations it’s easy to show that constraints for odd-order ra-
dial derivations turn to zero because of symmetry. Images for the
second and fourth derivations are expressed as

H̃(2nd deriv)(k) = −k2

3
H̃(k) , H̃(4th deriv)(k) =

k4

5
H̃(k) . (29)

Filtering kernels generally accepted to use are k-sharp, Top-
hat and Gaussian:

– k-sharp

WKS(r,RW) =
1

2πR3
W

j1(r/RW)

r/RW
, (30)

W̃KS(k,RW) = δ̃
(3)
D (k) θ(1− kRW) ; (31)

– Top-hat

WTH(r,RW) =
3

4πR3
W

θ(1− r/RW) , (32)

W̃TH(k,RW) = δ̃
(3)
D (k) 3

j1(kRW)

kRW
; (33)

– Gaussian

WG(r,RW) =
1

(2π)3/2R3
W

e−r2/(2R2

W
) , (34)

W̃G(k,RW) = δ̃
(3)
D (k) e−k2R2

W
/2 ; (35)

whereδ̃(3)D (k) = k/(21/2π) is the image of the three-dimensional
Dirac’s delta-function. Consider one of these kernels as the con-
straining kernel which depends on only the single parameter, a
space scaleRH. Volume integral for any of these filters is normal-
ized to unity, although it is not necessary for constrainingkernels
since any factor will be reduced in Eq. 22. However, this normaliza-
tion allows for clear physical treatment of constraints. For example,
the mass of the host perturbation with overdensity∆(c)(r) inside a
sphere of radiusr is

M(< r) =

∫

d3r′ ρ(r′) θ(1− r′/r) (36)

=
4π

3
Ωmρ0r

3

(

1 +

∫

∞

0

dk ∆̃(c)(k) W̃TH(k, r)

)

,

(37)

where the second term in braces is the overdensity averaged in the
volume of the host. The host overdensity profile can be obtained
using Eq. 18 for the fixed values of the constraining functionals
Cα, then the averaged one will be

∆ = Q−1
αβCα

∫

dk W̃TH(k, r) H̃(β)(k,RH)P (k) . (38)

Relation between the characteristic scaleRW and filtering ra-
diusRf , as well as between the scaleRH and actual constraining
radiusRh is determined by the choise of the kernel. As Bardeen
et al. (1986) noted, the characteristic scale for the Top-hat fil-
ter is not the actual space scale which is filtered out if we inter-
ested in the mass enclosed inside, but connected to it viaRf =

0.64RW . For this ratio and specified power spectrum normaliza-
tion, σ8 = 0.9, the nonlinear mass for unconstrained power spec-
trum ism∗ ≈ 3× 1014h−1M⊙. This value is used to adjust char-
acteristic scales for k-sharp and Gaussian kernels. As a result, the
ratio for k-sharp kernel as well as Gaussian isRf = 1.4RW. Ra-
tio for the constraining scale is assumed the same, accordingly to
the kernel used. The constraining mass is defined similarly to the
filtered one:Mh = (4π/3)Ωmρ0R

3
h.

For the single constraint withH = WTH we can see that the
value of the constraining functional is bound to the mass associated
with the host perturbation and to the averaged overdensity:

∆(Rh) ≡ C =
3Mh

4πΩmρ0R3
h

− 1 (39)

(note the remark on constraining scale made in the previous para-
graph). This quantity carries the growth factor of the host perturba-
tion for a given epoch, as a multiplier.

Choice of the constraining kernel as well as filtering one is not
unique and motivated by convenience usually. Top-hat kernel is a
natural choice for a mass constraint as it has no ’tails’ in the real
space. On the other hand the k-sharp filter suits better for excur-
sion set formalism (Bond et al. 1991). Also k-sharp kernel gives
simple expressions in momentum space. Indeed, consider thesin-
gle constraint withH = W = WKS. DenotingS(0) an uncon-
strained variance (Eq. 6) we get the trivial relation for subhaloes
(RW < RH):

S = S(0)(RW)− S(0)(RH) . (40)

Something similar should take place for other kernels, although in
a case of a larger number of constraints it might not be so. At Fig. 1
is presented the functionSL(m) for different kernels and different
numbers of constraints. The models were computed for the host
halo massMh = 1012h−1M⊙. As we see the Top-hat kernel lead
to the variance stable with respect to adding more constraints. Also
the k-sharp has the same property for massesm < Mh but it gives
oscillations for greater masses, seemingly due to oscillations in the
real space. In the case of the Gaussian filter we see a more logical
behaviour: the increase in the number of statistical constraints lead
to the decrease in the variance in total. Note, since the function
SL(m) is monotonically decreases, the lesser values of the variance
cause the lesser amount of sub-haloes of associated mass, shifting
mass PDF to the lower masses while the total amount of mass keeps
unchanged and equals toMh. Nevertheless, the adopting of Top-
hat kernel instead of k-sharp, or Gaussian instead of Top-hat lead
to effectively lower host mass and to younger sub-halo population.
Applying different kernels for constraint and filter is probably not
a good idea since kernels may interfere giving oscillationsin real
space.

2.4 Linear growing of perturbations

A linear evolution law for density perturbations is known for an
arbitrary uniform and isotropic cosmology model (Bildhauer et al.
1992). It depends on global density parameters of the Universe and
gives the amplitude of decaying or growing modes as a function of
scale factor or redshift. The solution for a growing mode is

D(0) =
5

2
a−3/2χ(a)

∫ a

0

db
b3/2

χ3(b)
, (41)

where

χ(a) =

(

1 +
Ωk

Ωm
a+

ΩΛ

Ωm
a3

)1/2

. (42)
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Figure 1. Linearly evolved variance calculated for various number ofcon-
straints, from top to bottom: one (just kernel), two (the kernel and its 2-
nd derivation) and three (the kernel, its 2-nd & 4-th derivations). Host halo
mass is1012h−1M⊙. Kernels used are: k-sharp (solid line), Top-hat (long-
dashed) and Gaussian (short-dashed). Upper dotted line is the unconstrained
variance, and horizontal dotted line marks the level of nonlinearity,SL = 1.
As seen, the Top-hat kernel gives variance which is invariant to the change
of the number of constraints. For k-sharp kernel this property is true only for
masses lesser than host. In both cases, the nonlinear mass isof order of the
host halo mass. Using Gaussian kernel leads to the substantial dependence
of the variance on the constraints number.

The evolution of perturbations inside an overdense or under-
dense region can be examined in a pseudo-cosmological notation,
if parameters of such notation are chosen appropriately (Peebles
1993). Namely, the need to set the density of the matter and dark
energy to corresponding values in a host halo or void, then dothe
integral for growth factor using the new density parameters:

Ω′

m = (1 + ∆)Ωm

Ω′

Λ = ΩΛ

Ω′

k = 1− Ω′

Λ − Ω′

m

(43)

Growth factor calculated in thise case we will denoteD. Here∆
is the overdensity of a host perturbation linearly evolved to the
present day, i.e. using the notation of Eq. 9, it can be written as
D(0)(z = 0)∆L. It is natural to bind this value to the overdensity
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∆ → ∞

∆ = 20
∆ = 3
∆ = 0

∆ = −0.75

Figure 2. Linear growth factor as the function of scale factor. Perturbations
are settled on a background with different overdensity∆. The case∆ = 0
corresponds to the unperturbed background. The solid line is the upper limit
of the dependence whenD(z = 0) = 5 (see text).

averaged over the volume of the host perturbation, Eq. 39, namely
∆ = ∆(Rh), understanding the last as evolved to the present time.
Substituting these definitions into equations above we get alaw of
growth on the given background. Properties of solutions arefol-
lowing. If the linear overdensity of the host is positive, then the
amplitude will grow faster turning to a greater value at present time.
However, an arbitrarily large value of∆ can lead to only finite lin-
ear amplitude at present time with limiting valueD(0) = 5 (Bild-
hauer et al. 1992, eq. 21 forΩm ≫ 1). Otherwise, the arbitrarily
small value of the linear overdensity lead to smaller valuesof am-
plitude at present time, givingD(0) = 0 as a limiting case for
∆ = −1.

3 APPLICATIONS

Our theory involves several parameters in addition to thosein the
original Press–Schechter approach. The parameters are thespatial
scale of constraintsRh or associated massMh, and the mean over-
density∆. Constraining kernel can also be chosen fairly free. As
we seen in Subsec. 2.3 the, different kernels with the same spa-
tial scale effectively correspond to the different masses of the host
halo, since they give different rates of decrease of the variance with
spatial scale. Such an effective mass or scale can be used to cali-
brateRh for various kernels. The effective value of this parameter
can be calculated as the spatial momentum of∆(c)(r) profile or
so. Other way is to bind the effective scale to the scale wherecon-
strained variance crosses unity. Seems reasonable to use the model
with H = W = WTH as a reference because the relations of the
kind Eq. 39 looks naturally in the real space for this case. Inthe fol-
lowing examples of applications we’ll use the Top-hat kernel both
for filter and for constraints.

We need to check the correctness of our theory for various
types of the real objects. As was mentioned in Subsec. 2.1, the
structure of the host halo may affect the mass function of thesub-
halo population. This impact should take place through the mass
segregation and to be reflected in the sub-halo merging process.
It is reliably enough to assume that such situation occurs inviri-
alized haloes only. Hence, the knowingly non-virialized structures
such as voids and friable superclusters, having low overdensities
(∆ ≪ 100, see Lacey & Cole (1993)), are free from this effect
of the ’structure biasing’. Last means that for these objects theωm
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factor in Eq. 10 equals to unity and number density PDF becomes

∂nm

∂m
=

Ωmρ0
m

fm , fm =

∣

∣

∣

∣

∂S

∂m

∣

∣

∣

∣

fS , (44)

wherefS from Eq. 2. The cumulative distribution function is

N(> m) =

∫ Mh

m

dm′ Ms

m′
f ′

m , (45)

where Ms is the total mass of an area of interest, i.e. of the
sub-area of a supercluster or void. This value can be bound to
the observed scaleRs at the given redshift via relationMs =
(4π/3)Ωmρ0R

3
s (1+∆). Without resorting to calculations we can

find qualitative properties of these distributions. Since the growth
factor is limited for all possible values of the host overdensity, and
the variance depends on the mass continuously (if constraining ker-
nels are continuous), there are the limiting distribution finction for
given constraining scaleRh or Mh, corresponding to the limit of
the evolution of sub-haloes population when the high-mass end of
the PDF is the heaviest possible. Other limiting property isthe low-
mass end of the distribution where PDF tends to the unconstrained
law which is rescaled accordingly to the growth factor valueand
independent ofMh.

Below we will very briefly touch three possible applicationsof
the theory: the mass function in superclusters and also in the voids,
and the bias relation for haloes in non-virialized hosts. The primary
goal here to show the dependence of the distribution functions on
the host overdensity.

3.1 Superclusters

Superclusters exhibit a very broad distribution of sizes from10h−1

Mpc extending up to150h−1 Mpc, and mass up to1016h−1M⊙.
These objects form mainly in shells and filaments, although lumps
are also observed. Clusters of galaxies are the characteristic compo-
nents of superclusters. The typical dynamical mass of rich clusters
is about1013 − 1015h−1M⊙. A number of rich clusters in super-
cluster can vary from several to over ten, and their mass fraction
can be about50 per cent (Bahcall 1999).

Superclusters can be characterized with density enhancement
factor which is the number of objects (clusters or galaxies)in the
supercluster related to the mean number of objects in the same vol-
ume (Bahcall & Soneira 1984). On the theoretical base the factor
can be represented as the relation

E =
N(< m)

N (0)(< m)
(1 +∆) , (46)

wherem is the lowest mass of objects we are counting. Here the Eq.
45 is used withMs = Mh, and the factor1+∆ is applied to trans-
form the Lagrange volume of the evolved host perturbation tothe
unperturbed Eulerian one. The density enhancement factor keeps
information about total mass or radius and depth of the host pertur-
bation. On the Fig. 3 this function is presented forMh = 1015 and
1016h−1M⊙, and for various overdensity values. In the low-mass
limit (m . 1010h−1M⊙, which corresponds to the dwarf galaxies)
the density enhancement factor reduces to dependence on∆ only,

E ≈ D(0)

D
(1 + ∆) , (47)

so measuringE by counting objects of small masses we can re-
store profile of the host overdensity. However, this may be difficult
since the number of dwarf galaxies in a superscuster can be tens and
hundreds of thousands, and it may be biased by a sub-clustering. In
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104
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E
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Figure 3.Density enhancement factor as the function of the lowest sub-halo
mass used for counting, and the host overdensity. Top panel:Ms = Mh =
1015h−1M⊙. Bottom panel:Ms = Mh = 1016h−1M⊙. As seen, there
is no dependense of the factor on the host halo mass or on the lowest sub-
halo mass for small values of last, although the dependense is strong for
moderate and high masses. In theory with unconstrained statistics we have
E ≡ 1 (not shown).

order to obtain the density profile by counting objects of moderate
masses the following way might be used. Considering an external
radius of a superclusterRs, count the number and the density en-
hancement factor of objects having mass greater than some value.
Then solve Eqs 45 and 46 assumingMs corresponding toRs (see
the prevoius Subsec.). Solving equations we get the mean overden-
sity ∆ and the lowest mass used previously for counting, i.e. it
is possible to calibrate the assumed lowest mass. The parameters
found can be used further for smaller radii.

Example of cumulative mass functions for the hostMh =
1016h−1M⊙ is shown at Fig. 4. We see that the mass of the most
massive sub-halo (levelN = 1) increases several times when over-
density changes from3 to20 but does not become higher than∼ 20
per cent of the mass of host. On these figures and on the graph of
the cumulative mass fraction of sub-population (Fig. 5) is seen how
the distribution of sub-halo masses slides toward the high mass end
when increasing host overdensity. This bias will be examined more
detailed in Subsec. 3.3.

3.2 Voids

Voids are formed from an underdensed regions by ousting the mat-
ter out and building the cosmological walls herewith. Voidsare
characterized by the typical size of tens megaparsecs and prolate
shape (Foster & Nelson 2009). According to simulations, theover-
density of the matter inside a void can be as low as−0.95 at Hubble
time (van de Weygaert & van Kampen 1993).
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Figure 4. Cumulative distribution functions for sub-haloes inside ahost.
Top panel:Ms = Mh = 1015h−1M⊙. Bottom panel:Ms = Mh =
1016h−1M⊙. The increment of the overdensity induces the redistribution
of the mass function to higher mass values. Inset shows the same graphs
zoomed in the high-mass end. The mass function for unconstrained case is
very close to the case∆ = 0, as expected.
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Figure 5. Cumulative distribution function of the mass fraction of sub-
haloes inside a hostMs = Mh = 1016h−1M⊙ for various linear over-
densities. Designations of overdensities by lines are the same as in Fig. 4.

Pustilnik & Tepliakova (2011) showed that galaxies in the
Lynx-Cancer void can form groups and filaments. So the sub-halo
population in voids is not spatially smooth but undergoes cluster-
ing. The distribution functions of sub-halo population inside voids
are represented on Figs. 4, 5 and 6 for∆ = −0.75.

Despite the fact that cosmological voids don’t virialize they
become nonlinear and the void’s boundaries become walls, sothe
total amount of mass occupied by the structure distinguished as
a void is by few orders smaller than mass of the host perturba-
tion. As the mean overdensity in a void is negative, the sub-halo
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Figure 6. Distribution function of the number density of sub-haloes in-
side a host. Top panel:Mh = 1015h−1M⊙. Bottom panel:Mh =
1016h−1M⊙. Designations of overdensities by lines are the same as in
Fig. 4.

population should be younger comparing to the superclusteror to
the unconstrained case, i.e. the mass function should be heavier in
the low-mass end. For these reasons the deficit of massive galax-
ies should be observed leading to sharper decay of the luminos-
ity function for galaxies of moderate and high masses. This may
be seen clearer on the number density distribution function, Fig.
6. Comparing to the original Press–Schechter theory without con-
straints (dotted line) the PDF inside the void (long-dash-dotted line)
has more sharp decline, so the differents become significantfor
m > 1012h−1M⊙. Pustilnik & Tepliakova (2011) didn’t observe
this effect for their Lynx-Cancer void galaxies sample. This can
be explained by the fact that the sample is limited by the abso-
lute magnitude∼ −18 which corresponds to dwarf galaxies hav-
ing photometric massM25 ∼ 1010M⊙ (Karachentsev et al. 2004,
the Hubble parameter ish = 0.72), so the halo mass doesn’t ex-
ceed1011M⊙. This mass limit reveals the trivial behaviour of the
low-mass end of mass function (Fig. 6). To distinguish the features
our theory brings, the galaxies with absolute magnitude lesser than
−20 or M25 & 1011M⊙ should be observed. For example, if the
host perturbation has the mass of orderMh ∼ 1016h−1M⊙ and
the mean overdensity of the void is∆ = −0.75 inside the sphere
Rs = 15h−1 Mpc (see simulations of van de Weygaert & van Kam-
pen (1993)), then the enclosed mass isMs ∼ 1014h−1M⊙. Such
void should contain a few haloes of mass∼ 1012h−1M⊙.

3.3 Bias factor

Galaxy biasing is known effect when the bright galaxies tendto
form near the high density peaks (Bardeen et al. 1986). In thedark
matter section this property reflects the fact that density peaks are
more clustered than underlying mass (Mo & White 1996). In other
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words, the dark haloes trace the features of the background den-
sity field. Halo biasing was examined theoretically first by Bardeen
et al. (1986). On base of the Press–Schechter theory the biaswas
obtained first by Mo & White (1996) as a relation between cor-
relation functions of haloes and mass. Their expression wasthen
extended by Sheth & Tormen (1999), revised by Jing (1998) and
Porciani et al. (1999), as well adjusted with numerical N-body re-
sults.

In approach of Sheth & Tormen (1999) the Eulerian bias factor
was defined as the linear part of the relative overabundance of the
halo number inside volumeV containing given massM from the
mean halo number in the same volume:

δhh =
N(m|M,V )

n(0)(m)V
− 1 = bPS∆+O(∆

2
) , (48)

Present day value of the factor obtained in the Press–Schechter the-
ory is

bPS = 1 +
δ∗

D(0)S
(0)
L

− D(0)

δ∗
. (49)

Jing (1998) and Porciani et al. (1999) faced the good agreement be-
tween this function and accurate numerical measurements for large
halo masses, but found a departure when the mass of the halo is
small; the model of Mo and White underestimated biasing for lower
mass limit leading to a constant value of the bias factor while nu-
merical measurements revealed a rising of it with mass decreasing.

The bias factor of a kind Eq. 49 depends on mass of the halo
but not on the background. In the previous numerical works the
procedure of calculating bias was constructed in such a way that
the factor was determined being averaged on a big enough compu-
tational volume. Using formulation of the mass function proposed
in this paper we can estimate the biasing effect stipulated by only
the host halo mass and overdensity. In a manner Eq. 48 the relative
overabundance of the halo number can be written as

δhh =
fm(m,Mh,∆)

f
(0)
m (m)

(1 + ∆)− 1 , (50)

where the volume tranformation factor1 + ∆ is considered, and
’zero’ index means the analogous values from the unconstrained
theory. Eulerian bias factor then defined as

b ≡ dδhh

d∆
. (51)

In this formulation both the dynamical age of the sub-halo popula-
tion (determined by host overdensity∆) and power spectrum con-
straints (determined by host massMh) affect the bias. On the Fig. 7
presented the bias factor forMh = 1016h−1M⊙ and various host
overdensities. The more rarefied background hosts younger sub-
halo population which becomes more biased in a lower masses.At
the same time the dense background demonstrates very strongbi-
asing in a high masses comparing to the approximating formula
of Mo & White. This discrepancy may be cleaned by the follow-
ing way. The large scale structures of different overdensities have
the different volume filling factor in the Universe. Namely,voids
having negative overdensity occupy the major part of the Universe
while the walls, filaments and other structures having positive over-
density occupy the volume with factor of order few per cents.Con-
sidering this it may be possible to match the rising low-masslimit
of the bias (Jing 1998) while to attenuate an exponential growth of
the bias factor in the high-mass limit.
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∆ = 3
∆ = 1
∆ = 0

∆ = −0.75
by Mo & White

Figure 7. Present day Eulerian bias factor forMh = 1016h−1M⊙ and
various host overdensities. It is seen, the younger sub-halo population (∆ is
lower), the more it is biased for the lower masses of sub-haloes. Dotted line
shows the bias factor by Mo & White (1996).

4 DISCUSSION

Comparing with the original Press–Schechter theory, our theoreti-
cal model has additional parameters: mean overdensity of the host
perturbation∆, its spatial scaleRh, constraining kernelH defin-
ing profile of the host perturbation, and its spatial momentaCα,
first of which is∆. From the original theory, our approach is for-
mally characterized in using of different mass–variance function
and assuming some different background cosmology. Thereby, all
the statistics it gives is spatially uniform. In addition, neither host
perturbation profile nor its overdensity changes the merging pro-
cess of the sub-halo population. That is, our theory in its present
form is not able to model properly the virialized haloes, e.g. haloes
of galaxies and galaxy clusters. As was mentioned above, thevirial-
ization process may result in mass segregation which alternates the
merger rates for low- and-high-mass sub-haloes. The process has
more significant influence on the high-mass end of the distribution
function. This effect can be named the ’structure biasing’.

Correction to the distribution functions accounting to the
structure biasing may have form of the multiplier, like in Eq. 10,
depending on parameters noted above, and also on sub-halo mass.
It is possible to estimate the high-mass limit of this multiplier using
virial considerations. In general case the spatial distribution of the
density per unit mass interval is

∂ρm
∂m

= Ωmρ0ωfm , (52)

whereω = ω(r,m) is a factor responding for the structure bias.
Cumulative mass of a sub-halo population inside a spherer is

M(< r) = 4π

∫ r

0

dr′ r′2
∫ Mh

0

dm
∂ρm(r′,m)

∂m

= 3Mh

∫ r/Rh

0

dxx2

∫ Mh

0

dmωfm ,

(53)

wherex = r/Rh is introduced. Theω factor depends on the viri-
alization process and reflects as density profile of a host halo so the
sub-haloes mass segregation inside it. Without going into details
of virialization we can denote that sub-haloes of high mass locate
naturally near the centre while low-mass haloes occupy the entire
host volume. The meaning ofω then might be the relative volume
filled by sub-haloes of a given mass. The factor should decrease
with sub-halo mass increasing, from a constant value of order unity
or greater, form ≪ Mh, to a somewhat small value in the limit
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m → Mh. The detailed structure of the high mass limit can be ex-
amined as follows. For definiteness let the virialized host halo has
NFW density profile (Navarro et al. 1997):

ρNFW =
∆cρ0

(1 + r/rs)2 r/rs
, (54)

wherers is the scale radius;∆c is the characteristic overdensity.
The mass profile with it’s Taylor expansion is

MNFW(< r) = Mh
3∆c

200c3

(

ln(1 + r/rs)− r/rs
1 + r/rs

)

= Mh
3∆c

200c3

(

r2

2r2s
+O

(

r3

r3s

))

,

(55)

where c is the concentration factor, andMh has the meaning
of the mass inside a sphere with overdensity200, i.e. Mh =
(4π/3) 200ρ0r

3
200, ΩmR3

h = 200r3200 , and r200 = crs. In the
vicinity of the centre the heavy mass sub-haloes dominate bymass
so we can assume mass profile of the population (Eq. 53) and of the
host halo (Eq. 55) matching there. Hence, the structure biasfactor
can be expressed in the form

ω =
∆c

Ωm

ωm

r/rs
(56)

with the natural mass conservation claim
∫ Mh

0

dmωmfm = 1 . (57)

The mass partωm of the structure bias factor can be obtained using
virial theorem and equipartition. Gravitational potential of NFW
halo is

ΦNFW = − 3∆c

200c3
GMh

rs

ln(1 + r/rs)

r/rs
. (58)

Write the virial theorem, neglecting an angular momentum ofthe
motion, then expand the virial at the lowest radii:

〈v2〉 =
〈

r
dΦNFW

dr

〉

∝
〈

r

rs
+O

(

r2

r2s

)〉

. (59)

Assuming equipartition at the lowest energies, we get〈v2〉 ∝ m−1,
and hence〈r〉 ∝ m−1. Now defineωm as the volume factor,ωm ∝
〈r〉3, then

ωm ∝ M3
h

m3
for m ∼ Mh . (60)

As we see, the structure bias factor reduces the amount of massive
sub-haloes simultaneously increasing the amount of small ones.

5 CONCLUSION

We proposed the modification of the Press–Schechter theory of
dark halo clustering. The basis of modification is the use of the
statistical constraints imposed on the initial gaussian random fluc-
tuations. Constraints has the form of the linear functionals of the
fluctuations’ overdensity field. Kernels of constraints determine the
shape and, mainly, the spatial scale of the host perturbation which
evolves to the supercluster or void. The resulting non-gaussianity
of the random field leads to existing of the upper limit of massof
the sub-haloes formed inside the host perturbation. Amplitude of
the perturbation also determines the age of the sub-halo population
in the sense of the merging process.

Since the only spherical host perturbation is adopted in this
paper we can not apply our theory to the variety of morphologies

of superclusters but to the lumps only. However, it is not difficult to
generalize the approach used here to an arbitrary shape of the host
perturbation to the wall or filament.

Calculations show, the distribution function for sub-haloes
with mass fraction10−4 − 10−3 of the host and greater reveal de-
viations from the original Press–Schechter predictions, while devi-
ations are negligible for lower masses so they can be expressed as a
rescaling. If the host halo mass isMh = 1015h−1M⊙ and its over-
density is∆ = 20, the deviations can be detected for sub-haloes
of the mass1012h−1M⊙ and greater. Assuming dark-to-light mass
relation be10, such haloes correspond to the galaxies having ab-
solute magnitude−20 and brighter (Karachentsev et al. 2004). To
check the theory in a voids’ galaxies is necessary to count ones with
absolute magnitudes lesser than−20. However, there may be only
a few such galaxies inside a tens-megaparsecs void. Also using the-
ory, it is possible to recall the density profile of the superclusters.

Approach used in this paper does not allow to predict the dis-
tribution functions in virialized haloes. However, in previous sec-
tion showed, the effect of the structure biasing should compen-
sate the shift of the distribution function inside an overdense halo
toward the high masses. This can explain the good fitting of the
Press–Schechter function to a wide range of observations and nu-
merical experiments.
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