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Chapter 1

Introduction

cvode is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [18]. This suite consists of cvode, arkode, kinsol, and ida, and variants of these
with sensitivity analysis capabilities.

1.1 Historical Background

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are vode [3] and vodpk [5]. vode is a general purpose
solver that includes methods for stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
vode is very similar to the well known solver lsode [23]. vodpk is a variant of vode that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
vodpk is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [4]. The
capabilities of both vode and vodpk have been combined in the C-language package cvode [10].

At present, cvode contains three Krylov methods that can be used in conjuction with Newton
iteration: the GMRES (Generalized Minimal RESidual) [24], Bi-CGStab (Bi-Conjugate Gradient
Stabilized) [25], and TFQMR (Transpose-Free Quasi-Minimal Residual) linear iterative methods [13].
As Krylov methods, these require almost no matrix storage for solving the Newton equations as
compared to direct methods. However, the algorithms allow for a user-supplied preconditioner matrix,
and for most problems preconditioning is essential for an efficient solution. For very large stiff ODE
systems, the Krylov methods are preferable over direct linear solver methods, and are often the only
feasible choice. Among the three Krylov methods in cvode, we recommend GMRES as the best overall
choice. However, users are encouraged to compare all three, especially if encountering convergence
failures with GMRES. Bi-CGFStab and TFQMR have an advantage in storage requirements, in that
the number of workspace vectors they require is fixed, while that number for GMRES depends on the
desired Krylov subspace size.

In the process of translating the vode and vodpk algorithms into C, the overall cvode organi-
zation has been changed considerably. One key feature of the cvode organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a
separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in pvode [8], the parallel variant
of cvode.

Recently, the functionality of cvode and pvode has been combined into one single code, simply
called cvode. Development of the new version of cvode was concurrent with a redesign of the
vector operations module across the sundials suite. The key feature of the nvector module is
that it is written in terms of abstract vector operations with the actual vector kernels attached by a
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particular implementation (such as serial or parallel) of nvector. This allows writing the sundials

solvers in a manner independent of the actual nvector implementation (which can be user-supplied),
as well as allowing more than one nvector module linked into an executable file. sundials (and
thus cvode) is supplied with serial, MPI-parallel, and both openMP and Pthreads thread-parallel
nvector implementations.

There are several motivations for choosing the C language for cvode. First, a general movement
away from Fortran and toward C in scientific computing was apparent. Second, the pointer, struc-
ture, and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for cvode because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended Fortran.

1.2 Changes from previous versions

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the cvode

solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to cvode.

Otherwise, only relatively minor modifications were made to the cvode solver:
In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line

was added to break out of root-search loop if the initial interval size is below the tolerance ttol.
In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an

illegal input error for DGBTRF/DGBTRS.
In order to eliminate or minimize the differences between the sources for private functions in cvode

and cvodes, the names of 48 private functions were changed from CV** to cv**, and a few other
names were also changed.

Two minor bugs were fixed regarding the testing of input on the first call to CVode – one involving
tstop and one involving the initialization of *tret.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

The example program cvAdvDiff diag p was added to illustrate the use of CVDiag in parallel.
In the FCVODE optional input routines FCVSETIIN and FCVSETRIN, the optional fourth argument

key length was removed, with hardcoded key string lengths passed to all strncmp tests.
In all FCVODE examples, integer declarations were revised so that those which must match a C

type long int are declared INTEGER*8, and a comment was added about the type match. All other
integer declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new nvector modules have been added for thread-parallel computing environments — one
for openMP, denoted NVECTOR OPENMP, and one for Pthreads, denoted NVECTOR PTHREADS.

With this version of sundials, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.
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A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,
the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the **Free function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the t location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS USE GENERIC MATH,
so that the parameter GENERIC MATH LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on Blas and Lapack
for both dense and banded matrices, and (b) an option to specify which direction of zero-crossing is
to be monitored while performing rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new Lapack-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire sundials source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including sundials header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

The functions in the generic dense linear solver (sundials dense and sundials smalldense) were
modified to work for rectangular m×n matrices (m ≤ n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

cvspbcg and cvsptfqmr modules have been added to interface with the Scaled Preconditioned Bi-
CGstab (spbcg) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (sptfqmr) linear
solver modules, respectively (for details see Chapter 4). Corresponding additions were made to the
Fortran interface module fcvode. At the same time, function type names for Scaled Preconditioned
Iterative Linear Solvers were added for the user-supplied Jacobian-times-vector and preconditioner
setup and solve functions.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvode and sundials ). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user
data right after its use. The build systems has been further improved to make it more robust.
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Changes in v2.2.1

The changes in this minor sundials release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
sundials suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, cvode now provides a
set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.6 and §4.5.8.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of cvode (and all of sundials) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions and specific example programs. We
expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

There are different possible levels of usage of cvode. The most casual user, with a small IVP
problem only, can get by with reading §2.1, then Chapter 4 through §4.5.5 only, and looking at
examples in [19]. In a different direction, a more expert user with an IVP problem may want to
(a) use a package preconditioner (§4.7), (b) supply his/her own Jacobian or preconditioner routines
(§4.6), (c) do multiple runs of problems of the same size (§4.5.9), (d) supply a new nvector module
(Chapter 6), or even (e) supply a different linear solver module (§3.2 and Chapter 7).

The structure of this document is as follows:

• In Chapter 2, we give short descriptions of the numerical methods implemented by cvode for
the solution of initial value problems for systems of ODEs, and continue with short descriptions
of preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4).

• The following chapter describes the structure of the sundials suite of solvers (§3.1) and the
software organization of the cvode solver (§3.2).

• Chapter 4 is the main usage document for cvode for C applications. It includes a complete
description of the user interface for the integration of ODE initial value problems.

• In Chapter 5, we describe fcvode, an interface module for the use of cvode with Fortran

applications.

• Chapter 6 gives a brief overview of the generic nvector module shared among the various
components of sundials, and details on the nvector implementations provided with sundials:
a serial implementation (§6.1), a distributed memory parallel implementation based on MPI

(§6.2), and two thread-parallel implementations based on openMP (§6.3) and Pthreads (§6.4),
respectively.

• Chapter 7 describes the interfaces to the linear solver modules, so that a user can provide his/her
own such module.
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• Chapter 8 describes in detail the generic linear solvers shared by all sundials solvers.

• Finally, in the appendices, we provide detailed instructions for the installation of cvode, within
the structure of sundials (Appendix A), as well as a list of all the constants used for input to
and output from cvode functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as cvdense, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin. !

Acknowledgments. We wish to acknowledge the contributions to previous versions of the cvode

and pvode codes and their user guides by Scott D. Cohen [9] and George D. Byrne [7].





Chapter 2

Mathematical Considerations

cvode solves ODE initial value problems (IVPs) in real N -space, which we write in the abstract form

ẏ = f(t, y) , y(t0) = y0 , (2.1)

where y ∈ RN . Here we use ẏ to denote dy/dt. While we use t to denote the independent variable, and
usually this is time, it certainly need not be. cvode solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself.

2.1 IVP solution

The methods used in cvode are variable-order, variable-step multistep methods, based on formulas
of the form

K1
∑

i=0

αn,iy
n−i + hn

K2
∑

i=0

βn,iẏ
n−i = 0 . (2.2)

Here the yn are computed approximations to y(tn), and hn = tn − tn−1 is the step size. The user
of cvode must choose appropriately one of two multistep methods. For nonstiff problems, cvode

includes the Adams-Moulton formulas , characterized by K1 = 1 and K2 = q above, where the order
q varies between 1 and 12. For stiff problems, cvode includes the Backward Differentiation Formulas
(BDFs) in so-called fixed-leading coefficient form, given by K1 = q and K2 = 0, with order q varying
between 1 and 5. The coefficients are uniquely determined by the method type, its order, the recent
history of the step sizes, and the normalization αn,0 = −1. See [6] and [21].

For either choice of formula, the nonlinear system

G(yn) ≡ yn − hnβn,0f(tn, yn) − an = 0 , (2.3)

where an ≡ ∑

i>0(αn,iy
n−i + hnβn,iẏ

n−i), must be solved (approximately) at each integration step.
For this, cvode offers the choice of either functional iteration, suitable only for nonstiff systems, and
various versions of Newton iteration. Functional iteration, given by

yn(m+1) = hnβn,0f(tn, yn(m)) + an ,

involves evaluations of f only. In contrast, Newton iteration requires the solution of linear systems

M [yn(m+1) − yn(m)] = −G(yn(m)) , (2.4)

in which
M ≈ I − γJ , J = ∂f/∂y , and γ = hnβn,0 . (2.5)

The initial guess for the iteration is a predicted value yn(0) computed explicitly from the available
history data.
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For the solution of the linear systems within the Newton corrections, cvode provides several
choices, including the option of an user-supplied linear solver module. The linear solver modules
distributed with sundials are organized in three families, a direct family comprising direct linear
solvers for dense or banded matrices, a sparse family comprising direct linear solvers for matrices stored
in compressed-sparse-column format, and a spils family comprising scaled preconditioned iterative
(Krylov) linear solvers. In addition, cvode also provides a linear solver module which only uses a
diagonal approximation of the Jacobian matrix. The methods offered through these modules are as
follows:

• dense direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• band direct solvers, using either an internal implementation or a Blas/Lapack implementation
(serial or threaded vector modules only),

• sparse direct solver interfaces, using either the KLU sparse solver library [11, 1], or the thread-
enabled SuperLU MT sparse solver library [22, 12, 2] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SuperLU MT packages indepen-
dent of cvode],

• a diagonal approximate Jacobian solver,

• spgmr, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver without
restarts,

• spbcg, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver, or

• sptfqmr, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator
and any of the preconditioned Krylov methods (spgmr, spbcg, or sptfqmr) yields a powerful tool
because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear)
iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the
user-supplied preconditioner matrix [4]. Note that the direct linear solvers (dense, band and sparse)
can only be used with the serial and threaded vector representations.

In the process of controlling errors at various levels, cvode uses a weighted root-mean-square
norm, denoted ‖ · ‖WRMS, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

Wi = 1/[rtol · |yi| + atoli] . (2.6)

Because 1/Wi represents a tolerance in the component yi, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a direct solver (dense, band, sparse, or diagonal), the iteration is a Modified Newton
iteration, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, for
any of the Krylov methods, it is an Inexact Newton iteration, in which M is applied in a matrix-free
manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. The matrix M (direct cases) or preconditioner matrix P (Krylov cases) is updated as infre-
quently as possible to balance the high costs of matrix operations against other costs. Specifically,
this matrix update occurs when:

• starting the problem,

• more than 20 steps have been taken since the last update,

• the value γ̄ of γ at the last update satisfies |γ/γ̄ − 1| > 0.3,

• a non-fatal convergence failure just occurred, or
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• an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P ), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to reevaluate
Jacobian data in P ) when:

• starting the problem,

• more than 50 steps have been taken since the last evaluation,

• a convergence failure occurred with an outdated matrix, and the value γ̄ of γ at the last update
satisfies |γ/γ̄ − 1| < 0.2, or

• a convergence failure occurred that forced a step size reduction.

The stopping test for the Newton iteration is related to the subsequent local error test, with the
goal of keeping the nonlinear iteration errors from interfering with local error control. As described
below, the final computed value yn(m) will have to satisfy a local error test ‖yn(m)−yn(0)‖ ≤ ǫ. Letting
yn denote the exact solution of (2.3), we want to ensure that the iteration error yn − yn(m) is small
relative to ǫ, specifically that it is less than 0.1ǫ. (The safety factor 0.1 can be changed by the user.)
For this, we also estimate the linear convergence rate constant R as follows. We initialize R to 1, and
reset R = 1 when M or P is updated. After computing a correction δm = yn(m)−yn(m−1), we update
R if m > 1 as

R ← max{0.3R, ‖δm‖/‖δm−1‖} .

Now we use the estimate

‖yn − yn(m)‖ ≈ ‖yn(m+1) − yn(m)‖ ≈ R‖yn(m) − yn(m−1)‖ = R‖δm‖ .

Therefore the convergence (stopping) test is

R‖δm‖ < 0.1ǫ .

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration
diverged if any ‖δm‖/‖δm−1‖ > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace hn by hn/4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.

When a Krylov method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector δm is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the
linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 · (0.1ǫ).

With the direct dense and band methods, the Jacobian may be supplied by a user routine, or
approximated by difference quotients, at the user’s option. In the latter case, we use the usual
approximation

Jij = [fi(t, y + σjej) − fi(t, y)]/σj .

The increments σj are given by

σj = max
{√

U |yj |, σ0/Wj

}

,

where U is the unit roundoff, σ0 is a dimensionless value, and Wj is the error weight defined in (2.6).
In the dense case, this scheme requires N evaluations of f , one for each column of J . In the band case,
the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of
f evaluations equal to the bandwidth.

We note that with the sparse direct solvers, the Jacobian must be supplied by a user routine in
compressed-sparse-column format.
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In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Jv = [f(t, y + σv) − f(t, y)]/σ . (2.7)

The increment σ is 1/‖v‖, so that σv has norm 1.
A critical part of cvode — making it an ODE “solver” rather than just an ODE method, is its

control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order q and step size h, satisfies an
asymptotic relation

LTE = Chq+1y(q+1) + O(hq+2)

for some constant C, under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor yn(0). These are combined to get a relation

LTE = C ′[yn − yn(0)] + O(hq+2) .

The local error test is simply ‖LTE‖ ≤ 1. Using the above, it is performed on the predictor-corrector
difference ∆n ≡ yn(m) − yn(0) (with yn(m) the final iterate computed), and takes the form

‖∆n‖ ≤ ǫ ≡ 1/|C ′| .

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h′ is computed based on the asymptotic behavior of the local error, namely by the equation

(h′/h)q+1‖∆n‖ = ǫ/6 .

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order q is reset to 1 (if q > 1), or the step is restarted from scratch (if q = 1). The
ratio h′/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, cvode returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, cvode periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order q for which a polynomial of order q
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.
At the current order q, selecting a new step size is done exactly as when the error test fails, giving a
tentative step size ratio

h′/h = (ǫ/6‖∆n‖)1/(q+1) ≡ ηq .

We consider changing order only after taking q + 1 steps at order q, and then we consider only orders
q′ = q − 1 (if q > 1) or q′ = q + 1 (if q < 5). The local truncation error at order q′ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q′),
behaves asymptotically as hq′+1. With safety factors of 1/6 and 1/10 respectively, these ratios are:

h′/h = [1/6‖LTE(q − 1)‖]1/q ≡ ηq−1

and
h′/h = [1/10‖LTE(q + 1)‖]1/(q+2) ≡ ηq+1 .

The new order and step size are then set according to

η = max{ηq−1, ηq, ηq+1} , h′ = ηh ,

with q′ set to the index achieving the above maximum. However, if we find that η < 1.5, we do not
bother with the change. Also, h′/h is always limited to 10, except on the first step, when it is limited
to 104.
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The various algorithmic features of cvode described above, as inherited from the solvers vode

and vodpk, are documented in [3, 5, 17]. They are also summarized in [18].

Normally, cvode takes steps until a user-defined output value t = tout is overtaken, and then it
computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force cvode not to integrate
past a given stopping point t = tstop.

2.2 Preconditioning

When using a Newton method to solve the nonlinear system (2.3), cvode makes repeated use of
a linear solver to solve linear systems of the form Mx = −r, where x is a correction vector and
r is a residual vector. If this linear system solve is done with one of the scaled preconditioned
iterative linear solvers, these solvers are rarely successful if used without preconditioning; it is generally
necessary to precondition the system in order to obtain acceptable efficiency. A system Ax = b can be
preconditioned on the left, as (P−1A)x = P−1b; on the right, as (AP−1)Px = b; or on both sides, as
(P−1

L AP−1
R )PRx = P−1

L b. The Krylov method is then applied to a system with the matrix P−1A, or
AP−1, or P−1

L AP−1
R , instead of A. In order to improve the convergence of the Krylov iteration, the

preconditioner matrix P , or the product PLPR in the last case, should in some sense approximate the
system matrix A. Yet at the same time, in order to be cost-effective, the matrix P , or matrices PL and
PR, should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff between
rapid convergence and low cost can be very difficult. Good choices are often problem-dependent (for
example, see [4] for an extensive study of preconditioners for reaction-transport systems).

The cvode solver allow for preconditioning either side, or on both sides, although we know of no
situation where preconditioning on both sides is clearly superior to preconditioning on one side only
(with the product PLPR). Moreover, for a given preconditioner matrix, the merits of left vs. right
preconditioning are unclear in general, and the user should experiment with both choices. Performance
will differ because the inverse of the left preconditioner is included in the linear system residual whose
norm is being tested in the Krylov algorithm. As a rule, however, if the preconditioner is the product
of two matrices, we recommend that preconditioning be done either on the left only or the right only,
rather than using one factor on each side.

Typical preconditioners used with cvode are based on approximations to the system Jacobian,
J = ∂f/∂y. Since the Newton iteration matrix involved is M = I − γJ , any approximation J̄ to
J yields a matrix that is of potential use as a preconditioner, namely P = I − γJ̄ . Because the
Krylov iteration occurs within a Newton iteration and further also within a time integration, and
since each of these iterations has its own test for convergence, the preconditioner may use a very
crude approximation, as long as it captures the dominant numerical feature(s) of the system. We
have found that the combination of a preconditioner with the Newton-Krylov iteration, using even
a fairly poor approximation to the Jacobian, can be surprisingly superior to using the same matrix
without Krylov acceleration (i.e., a modified Newton iteration), as well as to using the Newton-Krylov
method with no preconditioning.

2.3 BDF stability limit detection

cvode includes an algorithm, stald (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods is certain situations, as
described below.

When the BDF option is selected, cvode uses Backward Differentiation Formula methods of orders
1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant λ in the
open left half-plane, the method is unconditionally stable (for any step size) for the standard scalar
model problem ẏ = λy. For an ODE system, this means that, roughly speaking, as long as all modes
in the system are stable, the method is also stable for any choice of step size, at least in the sense of
a local linear stability analysis.
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At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each
case, in order for the method to be stable at step size h on the scalar model problem, the product hλ
must lie in a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue λ of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents hλ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations, since the oscillation generally must
be followed by the solver, and this requires step sizes (h ∼ 1/ν, where ν is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/ν. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The stald algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [15]. The algo-
rithm supplements (but differs greatly from) the existing algorithms in cvode for choosing step size
and order based on estimated local truncation errors. It works directly with history data that is readily
available in cvode. If it concludes that the step size is in fact stability-limited, it dictates a reduction
in the method order, regardless of the outcome of the error-based algorithm. The stald algorithm has
been tested in combination with the vode solver on linear advection-dominated advection-diffusion
problems [16], where it works well. The implementation in cvode has been successfully tested on
linear and nonlinear advection-diffusion problems, among others.

This stability limit detection option adds some overhead computational cost to the cvode solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a cvode solution with this option turned off appears to take an
inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution time
scale, then there is a good chance that step sizes are being limited by stability, and that turning on
the option will improve the efficiency of the solution.

2.4 Rootfinding

The cvode solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), cvode can also find the roots of a set of user-defined
functions gi(t, y) that depend on t and the solution vector y = y(t). The number of these root
functions is arbitrary, and if more than one gi is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the t axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of gi(t, y(t)), denoted gi(t) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by cvode. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any gi(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [14].
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In addition, each time g is computed, cvode checks to see if gi(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any gi is found at a point t, cvode computes g at t + δ for a
small increment δ, slightly further in the direction of integration, and if any gi(t+ δ) = 0 also, cvode

stops and reports an error. This way, each time cvode takes a time step, it is guaranteed that the
values of all gi are nonzero at some past value of t, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, cvode has an interval (tlo, thi] in which roots of the gi(t) are to be sought, such that thi is
further ahead in the direction of integration, and all gi(tlo) 6= 0. The endpoint thi is either tn, the end
of the time step last taken, or the next requested output time tout if this comes sooner. The endpoint
tlo is either tn−1, or the last output time tout (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward tn if an exact
zero was found. The algorithm checks g at thi for zeros and for sign changes in (tlo, thi). If no sign
changes are found, then either a root is reported (if some gi(thi) = 0) or we proceed to the next time
interval (starting at thi). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

τ = 100 ∗ U ∗ (|tn| + |h|) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |gi(thi)|/|gi(thi)− gi(tlo)|, corresponding to the
closest to tlo of the secant method values. At each pass through the loop, a new value tmid is set,
strictly within the search interval, and the values of gi(tmid) are checked. Then either tlo or thi is reset
to tmid according to which subinterval is found to have the sign change. If there is none in (tlo, tmid)
but some gi(tmid) = 0, then that root is reported. The loop continues until |thi − tlo| < τ , and then
the reported root location is thi.

In the loop to locate the root of gi(t), the formula for tmid is

tmid = thi − (thi − tlo)gi(thi)/[gi(thi) − αgi(tlo)] ,

where α a weight parameter. On the first two passes through the loop, α is set to 1, making tmid

the secant method value. Thereafter, α is reset according to the side of the subinterval (low vs high,
i.e. toward tlo vs toward thi) in which the sign change was found in the previous two passes. If the
two sides were opposite, α is set to 1. If the two sides were the same, α is halved (if on the low
side) or doubled (if on the high side). The value of tmid is closer to tlo when α < 1 and closer to thi

when α > 1. If the above value of tmid is within τ/2 of tlo or thi, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least τ/2.





Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as sundials consists of the solvers cvode and arkode (for ODE
systems), kinsol (for nonlinear algebraic systems), and ida (for differential-algebraic systems). In
addition, sundials also includes variants of cvode and ida with sensitivity analysis capabilities
(using either forward or adjoint methods), called cvodes and idas, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Fig. 3.1). The following is a list
of the solver packages presently available, and the basic functionality of each:

• cvode, a solver for stiff and nonstiff ODE systems dy/dt = f(t, y) based on Adams and BDF
methods;

• cvodes, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

• arkode, a solver for ODE systems Mdy/dt = f(t, y) based on additive Runge-Kutta methods;

• ida, a solver for differential-algebraic systems F (t, y, ẏ) = 0 based on BDF methods;

• idas, a solver for differential-algebraic systems with sensitivity analysis capabilities;

• kinsol, a solver for nonlinear algebraic systems F (u) = 0.

3.2 CVODE organization

The cvode package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the cvode package is shown in Figure 3.2. The central integration
module, implemented in the files cvode.h, cvode impl.h, and cvode.c, deals with the evaluation of
integration coefficients, the functional or Newton iteration process, estimation of local error, selection
of stepsize and order, and interpolation to user output points, among other issues. Although this
module contains logic for the basic Newton iteration algorithm, it has no knowledge of the method
being used to solve the linear systems that arise. For any given user problem, one of the linear system
modules is specified, and is then invoked as needed during the integration.

At present, the package includes the following eight cvode linear algebra modules, organized into
two families. The direct family of linear solvers provides solvers for the direct solution of linear systems
with dense, banded, or sparse matrices, and includes:

• cvdense: LU factorization and backsolving with dense matrices (using either an internal im-
plementation or Blas/Lapack);
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(a) High-level diagram (note that none of the Lapack-based linear solver modules are represented.)
* only applies to arkode

** only applies to arkode and kinsol

(b) Directory structure of the source tree

Figure 3.1: Organization of the SUNDIALS suite
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Figure 3.2: Overall structure diagram of the cvode package. Modules specific to cvode are dis-
tinguished by rounded boxes, while generic solver and auxiliary modules are in rectangular boxes.
Note that the direct linear solvers using Lapack implementations are not explicitly represented. Note
also that the KLU and SuperLU MT support is through interfaces to packages. Users will need to
download and compile those packages independently.

• cvband: LU factorization and backsolving with banded matrices (using either an internal im-
plementation or Blas/Lapack);

• cvklu: LU factorization and backsolving with compressed-sparse-column (CSC) matrices using
the KLU linear solver library [11, 1] (KLU to be downloaded and compiled by user independent
of cvode);

• cvsuperlumt: LU factorization and backsolving with compressed-sparse-column (CSC) ma-
trices using the threaded SuperLU MT linear solver library [22, 12, 2] (SuperLU MT to be
downloaded and compiled by user independent of cvode).

The spils family of linear solvers provides scaled preconditioned iterative linear solvers and includes:

• cvspgmr: scaled preconditioned GMRES method;

• cvspbcg: scaled preconditioned Bi-CGStab method;

• cvsptfqmr: scaled preconditioned TFQMR method.

Additionally, cvode includes:

• cvdiag: an internally generated diagonal approximation to the Jacobian;

The set of linear solver modules distributed with cvode is intended to be expanded in the future as
new algorithms are developed. Note that users wishing to employ KLU or SuperLU MT will need to
download and install these libraries independent of sundials. sundials provides only the interfaces
between itself and these libraries.
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In the case of the direct methods cvdense and cvband the package includes an algorithm for the
approximation of the Jacobian by difference quotients, but the user also has the option of supplying
the Jacobian (or an approximation to it) directly. When using the sparse direct linear solvers cvklu

and cvsuperlumt, the user must supply a routine for the Jacobian (or an approximation to it) in
CSC format, since standard difference quotient approximations do not leverage the inherent sparsity
of the problem. In the case of the Krylov iterative methods cvspgmr, cvspbcg, and cvsptfqmr, the
package includes an algorithm for the approximation by difference quotients of the product between
the Jacobian matrix and a vector of appropriate length. Again, the user has the option of providing a
routine for this operation. For the Krylov methods, the preconditioning must be supplied by the user,
in two phases: setup (preprocessing of Jacobian data) and solve. While there is no default choice of
preconditioner analogous to the difference-quotient approximation in the direct case, the references
[4, 5], together with the example and demonstration programs included with cvode, offer considerable
assistance in building preconditioners.

Each cvode linear solver module consists of four routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, and only as required to achieve
convergence. The call list within the central cvode module to each of the five associated functions is
fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. With the exception of cvdiag, each of the
linear solver modules (cvdense etc.) consists of an interface built on top of a generic linear system
solver (dense etc.). The interface deals with the use of the particular method in the cvode context,
whereas the generic solver is independent of the context. While some of the generic linear system
solvers (dense, band, spgmr, spbcg, and sptfqmr) were written with sundials in mind, they
are intended to be usable anywhere as general-purpose solvers. This separation also allows for any
generic solver to be replaced by an improved version, with no necessity to revise the cvode package
elsewhere.

cvode also provides two preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first one, cvbandpre, is intended to be used with nvector serial, nvector openmp

or nvector pthreads and provides a banded difference-quotient Jacobian-based preconditioner,
with corresponding setup and solve routines. The second preconditioner module, cvbbdpre, works
in conjunction with nvector parallel and generates a preconditioner that is a block-diagonal
matrix with each block being a band matrix.

All state information used by cvode to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the cvode package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the cvode memory structure. The reentrancy of cvode was motivated
by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two
or more problems are solved by intermixed calls to the package from within a single user program.



Chapter 4

Using CVODE for C Applications

This chapter is concerned with the use of cvode for the solution of initial value problems (IVPs) in
a C language setting. The following sections treat the header files and the layout of the user’s main
program, and provide descriptions of the cvode user-callable functions and user-supplied functions.

The sample programs described in the companion document [19] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
cvode package.

Users with applications written in Fortran77 should see Chapter 5, which describes the For-

tran/C interface module.
The user should be aware that not all linear solver modules are compatible with all nvector imple-

mentations. For example, nvector parallel is not compatible with the direct dense, direct band or
direct sparse linear solvers since these linear solver modules need to form the complete system Jacobian.
The following cvode modules can only be used with either nvector serial, nvector openmp or
nvector pthreads: cvdense, cvband (using either the internal or the Lapack implementation),
cvklu, cvsuperlumt and cvbandpre. It is not recommended to use a threaded vector module
with SuperLU MT unless it is the nvector openmp module and SuperLU MT is also compiled with
openMP. Also, the preconditioner module cvbbdpre can only be used with nvector parallel.

cvode uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of cvode, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by cvode. The relevant library files are

• libdir/libsundials cvode.lib,

• libdir/libsundials nvec*.lib (one to four files),

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

• incdir/include/cvode

• incdir/include/sundials

• incdir/include/nvector

The directories libdir and incdir are the install library and include directories, resp. For a default
installation, these are instdir/lib and instdir/include, respectively, where instdir is the directory
where sundials was installed (see Appendix A).
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4.2 Data Types

The sundials types.h file contains the definition of the type realtype, which is used by the sundials

solvers for all floating-point data. The type realtype can be float, double, or long double, with
the default being double. The user can change the precision of the sundials solvers arithmetic at
the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials types.h defines BIG REAL to be the largest
value representable as a realtype, SMALL REAL to be the smallest value representable as a realtype,
and UNIT ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within sundials, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “L” makes it a long double. For example,

#define A 1.0

#define B 1.0F

#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. sundials

uses the RCONST macro internally to declare all of its floating-point constants.
A user program which uses the type realtype and the RCONST macro to handle floating-point

constants is precision-independent except for any calls to precision-specific standard math library
functions. (Our example programs use both realtype and RCONST.) Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype). Thus, a previously existing piece of ANSI C code can use sundials without modifying
the code to use realtype, so long as the sundials libraries use the correct precision (for details see
§A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

• cvode.h, the main header file for cvode, which defines the several types and various constants,
and includes function prototypes.

Note that cvode.h includes sundials types.h, which defines the types realtype and booleantype

and the constants FALSE and TRUE.
The calling program must also include an nvector implementation header file (see Chapter 6 for

details). For the nvector implementations that are included in the cvode package, the corresponding
header files are:

• nvector serial.h, which defines the serial implementation nvector serial;

• nvector parallel.h, which defines the parallel (MPI) implementation, nvector parallel.

• nvector openmp.h, which defines the shared memory parallel openMP implementation,

• nvector pthreads.h, which defines the shared memory parallel Pthreads implementation.

Note that both these files in turn include the header file sundials nvector.h which defines the
abstract N Vector data type.

Finally, if the user chooses Newton iteration for the solution of the nonlinear systems, then a linear
solver module header file will be required. The header files corresponding to the various linear solvers
availble for use with cvode are:
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• cvode dense.h, which is used with the dense direct linear solver;

• cvode band.h, which is used with the band direct linear solver;

• cvode lapack.h, which is used with Lapack implementations of dense or band direct linear
solvers;

• cvode diag.h, which is used with the diagonal linear solver;

• cvode klu.h, which is used with the KLU sparse direct linear solver;

• cvode superlumt.h, which is used with the SuperLU MT threaded sparse direct linear solver;

• cvode spgmr.h, which is used with the scaled, preconditioned GMRES Krylov linear solver
spgmr;

• cvode spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab Krylov linear solver
spbcg;

• cvode sptfqmr.h, which is used with the scaled, preconditioned TFQMR Krylov solver spt-

fqmr;

The header files for the dense and banded linear solvers (both internal and Lapack) include the file
cvode direct.h, which defines common functions. This in turn includes a file (sundials direct.h)
which defines the matrix type for these direct linear solvers (DlsMat), as well as various functions and
macros acting on such matrices.

The header files for the KLU and SuperLU MT sparse linear solvers include the file cvode sparse.h,
which defines common functions. This in turn includes a file (sundials sparse.h) which defines the
matrix type for these sparse direct linear solvers (SlsMat), as well as various functions and macros
acting on such matrices.

The header files for the Krylov iterative solvers include cvode spils.h which defines common
functions and which in turn includes a header file (sundials iterative.h) which enumerates the
kind of preconditioning and (for the spgmr solver only) the choices for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvDiurnal kry p example (see [19]), preconditioning is done with a block-diagonal matrix. For this,
even though the cvspgmr linear solver is used, the header sundials dense.h is included for access
to the underlying generic dense linear solver.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of
an ODE IVP. Some steps are independent of the nvector implementation used; where this is not
the case, usage specifications are given for the vector implementations provided with cvode: steps
marked [P] correspond to nvector parallel, steps marked [O] correspond to nvector openmp,
steps marked [T] correspond to nvector pthreads, while steps marked [S] correspond to nvec-

tor serial.

1. [P] Initialize MPI

Call MPI Init(&argc, &argv) to initialize MPI if used by the user’s program. Here argc and
argv are the command line argument counter and array received by main, respectively.

2. Set problem dimensions

[S], [O], [T] Set N, the problem size N .

[O], [T] Set num threads, the number of threads to use within the threaded vector functions.
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[P] Set Nlocal, the local vector length (the sub-vector length for this process); N, the global
vector length (the problem size N , and the sum of all the values of Nlocal); and the active set of
processes.

Note: The variables N and Nlocal should be of type long int. The variable num threads should
be of type int.

3. Set vector of initial values

To set the vector y0 of initial values, use the appropriate functions defined by the particular
nvector implementation. If a realtype array ydata containing the initial values of y already
exists, then make the call:

[S] y0 = N VMake Serial(N, ydata);

[O] y0 = N VMake OpenMP(N, num threads, ydata);

[T] y0 = N VMake Pthreads(N, num threads, ydata);

[P] y0 = N VMake Parallel(comm, Nlocal, N, ydata);

Otherwise, make the call:

[S] y0 = N VNew Serial(N);

[O] y0 = N VNew OpenMP(N, num threads);

[T] y0 = N VNew Pthreads(N, num threads);

[P] y0 = N VNew Parallel(comm, Nlocal, N);

and load initial values into the structure defined by:

[S] NV DATA S(y0)

[O] NV DATA OMP(y0)

[T] NV DATA PT(y0)

[P] NV DATA P(y0)

Here comm is the MPI communicator, set in one of two ways: If a proper subset of active processes
is to be used, comm must be set by suitable MPI calls. Otherwise, to specify that all processes are
to be used, comm must be MPI COMM WORLD.

4. Create cvode object

Call cvode mem = CVodeCreate(lmm, iter) to create the cvode memory block and to specify
the solution method (linear multistep method and nonlinear solver iteration type). CVodeCreate
returns a pointer to the cvode memory structure. See §4.5.1 for details.

5. Initialize cvode solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
cvode, and initialize cvode. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Set optional inputs

Call CVodeSet* functions to change any optional inputs that control the behavior of cvode from
their default values. See §4.5.6.1 for details.
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8. Attach linear solver module

If Newton iteration is chosen, initialize the linear solver module with one of the following calls
(for details see §4.5.3):

[S], [O], [T] ier = CVDense(...);

[S], [O], [T] ier = CVBand(...);

[S], [O], [T] flag = CVLapackDense(...);

[S], [O], [T] flag = CVLapackBand(...);

[S], [O], [T] flag = CVKLU(...);

[S], [O], [T] flag = CVSuperLUMT(...);

ier = CVDiag(...);

ier = CVSpgmr(...);

ier = CVSpbcg(...);

ier = CVSptfqmr(...);

9. Set linear solver optional inputs

Call CV*Set* functions from the selected linear solver module to change optional inputs specific
to that linear solver. See §4.5.6 for details.

10. Specify rootfinding problem

Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.4, and see §4.5.6.5 for relevant optional input calls.

11. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,

itask). Here itask specifies the return mode. The vector y (which can be the same as the vector
y0 above) will contain y(t). See §4.5.5 for details.

12. Get optional outputs

Call CV*Get* functions to obtain optional output. See §4.5.8 for details.

13. Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y by calling the destructor
function defined by the nvector implementation:

[S] N VDestroy Serial(y);

[O] N VDestroy OpenMP(y);

[T] N VDestroy Pthreads(y);

[P] N VDestroy Parallel(y);

14. Free solver memory

Call CVodeFree(&cvode mem) to free the memory allocated for cvode.

15. [P] Finalize MPI

Call MPI Finalize() to terminate MPI.
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4.5 User-callable functions

This section describes the cvode functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.6, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of cvode. In any
case, refer to §4.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.6.1).

4.5.1 CVODE initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the cvode memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode mem = CVodeCreate(lmm, iter);

Description The function CVodeCreate instantiates a cvode solver object and specifies the solution
method.

Arguments lmm (int) specifies the linear multistep method and may be one of two possible values:
CV ADAMS or CV BDF.

iter (int) specifies the type of nonlinear solver iteration and may be either CV NEWTON

or CV FUNCTIONAL.

The recommended choices for (lmm, iter) are (CV ADAMS, CV FUNCTIONAL) for nonstiff
problems and (CV BDF, CV NEWTON) for stiff problems.

Return value If successful, CVodeCreate returns a pointer to the newly created cvode memory block
(of type void *). Otherwise, it returns NULL.

CVodeInit

Call flag = CVodeInit(cvode mem, f, t0, y0);

Description The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes cvode.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.

f (CVRhsFn) is the C function which computes the right-hand side function
f in the ODE. This function has the form f(t, y, ydot, user data) (for
full details see §4.6.1).

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeInit was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call to
CVodeCreate.

CV MEM FAIL A memory allocation request has failed.

CV ILL INPUT An input argument to CVodeInit has an illegal value.

Notes If an error occurred, CVodeInit also sends an error message to the error handler func-
tion.
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CVodeFree

Call CVodeFree(&cvode mem);

Description The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.

Arguments The argument is the pointer to the cvode memory block (of type void *).

Return value The function CVodeFree has no return value.

4.5.2 CVODE tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

CVodeSStolerances

Call flag = CVodeSStolerances(cvode mem, reltol, abstol);

Description The function CVodeSStolerances specifies scalar relative and absolute tolerances.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (realtype) is the scalar absolute error tolerance.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSStolerances was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call to
CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV ILL INPUT One of the input tolerances was negative.

CVodeSVtolerances

Call flag = CVodeSVtolerances(cvode mem, reltol, abstol);

Description The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.

reltol (realtype) is the scalar relative error tolerance.

abstol (N Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeSVtolerances was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call to
CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

CV ILL INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.
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CVodeWFtolerances

Call flag = CVodeWFtolerances(cvode mem, efun);

Description The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights Wi for use in the weighted RMS norm, which are normally
defined by Eq. (2.6).

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.

efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeWFtolerances was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call to
CVodeCreate.

CV NO MALLOC The allocation function CVodeInit has not been called.

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 10−4

means that errors are controlled to .01%. We do not recommend using reltol larger than 10−3.
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvRoberts dns in the cvode package, and the discussion of it in the cvode Examples document [19].
In that problem, the three components vary betwen 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservately, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol
= 10−6. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried
by the solver are unaffected. Remember that a small negative value in y returned by cvode, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the f routine
cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
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offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(t, y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver specification functions

As previously explained, Newton iteration requires the solution of linear systems of the form (2.4).
There are eight cvode linear solvers currently available for this task: cvdense, cvband, cvklu,
cvsuperlumt, cvdiag, cvspgmr, cvspbcg, and cvsptfqmr.

The first two linear solvers are direct and derive their names from the type of approximation used
for the Jacobian J = ∂f/∂y; cvdense and cvband work with dense and banded approximations to
J , respectively. The sundials suite includes both internal implementations of these two linear solvers
and interfaces to Lapack implementations. Together, these linear solvers are referred to as cvdls

(from Direct Linear Solvers).
The second two linear solvers are sparse direct solvers based on Gaussian elimination, and require

user-supplied routines to construct the Jacobian J = ∂f/∂y in compressed-sparse-column format. The
sundials suite does not include internal implementations of these solver libraries, instead requiring
compilation of sundials to link with existing installations of these libraries (if either is missing,
sundials will install without the corresponding interface routines). Together, these linear solvers are
referred to as cvsls (from Sparse Linear Solvers).

The cvdiag linear solver is also a direct linear solver, but it only uses a diagonal approximation
to J .

The last three cvode linear solvers, cvspgmr, cvspbcg, and cvsptfqmr, are Krylov itera-
tive solvers, which use scaled preconditioned GMRES, scaled preconditioned Bi-CGStab, and scaled
preconditioned TFQMR, respectively. Together, they are referred to as cvspils (from Scaled Precon-
ditioned Iterative Linear Solvers).

With any of the Krylov methods, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. For the specification of a preconditioner, see the iterative
linear solver sections in §4.5.6 and §4.6.

If preconditioning is done, user-supplied functions define left and right preconditioner matrices P1

and P2 (either of which could be the identity matrix), such that the product P1P2 approximates the
Newton matrix M = I − γJ of (2.5).

To specify a cvode linear solver, after the call to CVodeCreate but before any calls to CVode,
the user’s program must call one of the functions CVDense/CVLapackDense, CVBand/CVLapackBand,
CVKLU, CVSuperLUMT, CVDiag, CVSpgmr, CVSpbcg, or CVSptfqmr, as documented below. The first
argument passed to these functions is the cvode memory pointer returned by CVodeCreate. A call to
one of these functions links the main cvode integrator to a linear solver and allows the user to specify
parameters which are specific to a particular solver, such as the half-bandwidths in the cvband case.
The use of each of the linear solvers involves certain constants and possibly some macros, that are
likely to be needed in the user code. These are available in the corresponding header file associated
with the linear solver, as specified below.

In each case except the diagonal approximation case cvdiag, the linear solver module used by
cvode is actually built on top of a generic linear system solver, which may be of interest in itself.
These generic solvers, denoted dense, band, klu, superlumt, spgmr, spbcg, and sptfqmr, are
described separately in Chapter 8.

CVDense

Call flag = CVDense(cvode mem, N);

Description The function CVDense selects the cvdense linear solver and indicates the use of the
internal direct dense linear algebra functions.
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The user’s main program must include the cvode dense.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (long int) problem dimension.

Return value The return value flag (of type int) is one of:

CVDLS SUCCESS The cvdense initialization was successful.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS ILL INPUT The cvdense solver is not compatible with the current nvector

module.

CVDLS MEM FAIL A memory allocation request failed.

Notes The cvdense linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible.

CVLapackDense

Call flag = CVLapackDense(cvode mem, N);

Description The function CVLapackDense selects the cvdense linear solver and indicates the use of
Lapack functions.

The user’s main program must include the cvode lapack.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (int) problem dimension.

Return value The values of the returned flag (of type int) are identical to those of CVDense.

Notes Note that N is restricted to be of type int here, because of the corresponding type
restriction in the Lapack solvers.

CVBand

Call flag = CVBand(cvode mem, N, mupper, mlower);

Description The function CVBand selects the cvband linear solver and indicates the use of the
internal direct band linear algebra functions.

The user’s main program must include the cvode band.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (long int) problem dimension.

mupper (long int) upper half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

mlower (long int) lower half-bandwidth of the problem Jacobian (or of the ap-
proximation of it).

Return value The return value flag (of type int) is one of:

CVDLS SUCCESS The cvband initialization was successful.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS ILL INPUT The cvband solver is not compatible with the current nvector

module, or one of the Jacobian half-bandwidths is outside of its valid
range (0 . . . N−1).

CVDLS MEM FAIL A memory allocation request failed.

Notes The cvband linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible. The half-bandwidths are
to be set such that the nonzero locations (i, j) in the banded (approximate) Jacobian
satisfy −mlower ≤ j − i ≤ mupper.
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CVLapackBand

Call flag = CVLapackBand(cvode mem, N, mupper, mlower);

Description The function CVLapackBand selects the cvband linear solver and indicates the use of
Lapack functions.

The user’s main program must include the cvode lapack.h header file.

Arguments The input arguments are identical to those of CVBand, except that N, mupper, and mlower

are of type int here.

Return value The values of the returned flag (of type int) are identical to those of CVBand.

Notes Note that N, mupper, and mlower are restricted to be of type int here, because of the
corresponding type restriction in the Lapack solvers.

CVKLU

Call flag = CVKLU(cvode mem, N, NNZ);

Description The function CVKLU selects the cvklu linear solver and indicates the use of sparse-direct
linear algebra functions.

The user’s main program must include the cvode klu.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (int) problem dimension.

NNZ (int) maximum number of nonzero entries in the system Jacobian.

Return value The return value flag (of type int) is one of:

CVSLS SUCCESS The cvklu initialization was successful.

CVSLS MEM NULL The cvode mem pointer is NULL.

CVSLS ILL INPUT The cvklu solver is not compatible with the current nvector mod-
ule.

CVSLS MEM FAIL A memory allocation request failed.

CVSLS PACKAGE FAIL A call to the KLU library returned a failure flag.

Notes The cvklu linear solver is not compatible with all implementations of the nvector

module. Of the nvector modules provided with sundials, only nvector serial,
nvector openmp and nvector pthreads are compatible.

CVSuperLUMT

Call flag = CVSuperLUMT(cvode mem, num threads, N, NNZ);

Description The function CVSuperLUMT selects the cvsuperlumt linear solver and indicates the use
of sparse-direct linear algebra functions.

The user’s main program must include the cvode superlumt.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

num threads (int) the number of threads to use when factoring/solving the linear
systems. Note that SuperLU MT is thread-parallel only in the factorization
routine.

N (int) problem dimension.

NNZ (int) maximum number of nonzero entries in the system Jacobian.

Return value The return value flag (of type int) is one of:

CVSLS SUCCESS The cvsuperlumt initialization was successful.

CVSLS MEM NULL The cvode mem pointer is NULL.
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CVSLS ILL INPUT The cvsuperlumt solver is not compatible with the current nvec-

tor module.

CVSLS MEM FAIL A memory allocation request failed.

CVSLS PACKAGE FAIL A call to the SuperLU MT library returned a failure flag.

Notes The cvsuperlumt linear solver is not compatible with all implementations of the
nvector module. Of the nvector modules provided with sundials, only nvec-

tor serial, nvector openmp and nvector pthreads are compatible.

Performance will significantly degrade if the user applies the SuperLU MT package!

compiled with PThreads while using the nvector openmp module. If a user wants to
use a threaded vector kernel with this thread-parallel solver, then SuperLU MT should
be compiled with openMP and the nvector openmp module should be used. Also,
note that the expected benefit of using the threaded vector kernel is minimal compared
to the potential benefit of the threaded solver, unless very long (greater than 100,000
entries) vectors are used.

CVDiag

Call flag = CVDiag(cvode mem);

Description The function CVDiag selects the cvdiag linear solver.

The user’s main program must include the cvode diag.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

Return value The return value flag (of type int) is one of:

CVDIAG SUCCESS The cvdiag initialization was successful.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG ILL INPUT The cvdiag solver is not compatible with the current nvector

module.

CVDIAG MEM FAIL A memory allocation request failed.

Notes The cvdiag solver is the simplest of all of the current cvode linear solvers. The cvdiag

solver uses an approximate diagonal Jacobian formed by way of a difference quotient.
The user does not have the option of supplying a function to compute an approximate
diagonal Jacobian.

CVSpgmr

Call flag = CVSpgmr(cvode mem, pretype, maxl);

Description The function CVSpgmr selects the cvspgmr linear solver.

The user’s main program must include the cvode spgmr.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspgmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvspgmr solver uses a scaled preconditioned GMRES iterative method to solve
the linear system (2.4).
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CVSpbcg

Call flag = CVSpbcg(cvode mem, pretype, maxl);

Description The function CVSpbcg selects the cvspbcg linear solver.

The user’s main program must include the cvode spbcgs.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvspbcg initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvspbcg solver uses a scaled preconditioned Bi-CGStab iterative method to solve
the linear system (2.4).

CVSptfqmr

Call flag = CVSptfqmr(cvode mem, pretype, maxl);

Description The function CVSptfqmr selects the cvsptfqmr linear solver.

The user’s main program must include the cvode sptfqmr.h header file.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) specifies the preconditioning type and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

maxl (int) maximum dimension of the Krylov subspace to be used. Pass 0 to use
the default value CVSPILS MAXL = 5.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The cvsptfqmr initialization was successful.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.

CVSPILS MEM FAIL A memory allocation request failed.

Notes The cvsptfqmr solver uses a scaled preconditioned TFQMR iterative method to solve
the linear system (2.4).

4.5.4 Rootfinding initialization function

While solving the IVP, cvode has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function. This is normally called only once,
prior to the first call to CVode, but if the rootfinding problem is to be changed during the solution,
CVodeRootInit can also be called prior to a continuation call to CVode.

CVodeRootInit

Call flag = CVodeRootInit(cvode mem, nrtfn, g);

Description The function CVodeRootInit specifies that the roots of a set of functions gi(t, y) are to
be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the cvode memory block returned by CVodeCreate.
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nrtfn (int) is the number of root functions gi.

g (CVRootFn) is the C function which defines the nrtfn functions gi(t, y)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

CV SUCCESS The call to CVodeRootInit was successful.

CV MEM NULL The cvode mem argument was NULL.

CV MEM FAIL A memory allocation failed.

CV ILL INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

4.5.5 CVODE solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where cvode is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.

CVode

Call flag = CVode(cvode mem, tout, yout, &tret, itask);

Description The function CVode integrates the ODE over an interval in t.

Arguments cvode mem (void *) pointer to the cvode memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N Vector) the computed solution vector.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next user step. The
CV NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV ONE STEP

option tells the solver to take just one internal step and then return the
solution at the point reached by that step.

Return value CVode returns a vector yout and a corresponding independent variable value t = tret,
such that yout is the computed value of y(t).

In CV NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).

The return value flag (of type int) will be one of the following:

CV SUCCESS CVode succeeded and no roots were found.

CV TSTOP RETURN CVode succeeded by reaching the stopping point specified through
the optional input function CVodeSetStopTime (see §4.5.6.1).

CV ROOT RETURN CVode succeeded and found one or more roots. In this case, tret is
the location of the root. If nrtfn > 1, call CVodeGetRootInfo to
see which gi were found to have a root.

CV MEM NULL The cvode mem argument was NULL.

CV NO MALLOC The cvode memory was not allocated by a call to CVodeInit.

CV ILL INPUT One of the inputs to CVode was illegal, or some other input to the
solver was either illegal or missing. The latter category includes the
following situations: (a) The tolerances have not been set. (b) A
component of the error weight vector became zero during internal
time-stepping. (c) The linear solver initialization function (called by
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the user after calling CVodeCreate) failed to set the linear solver-
specific lsolve field in cvode mem. (d) A root of one of the root
functions was found both at a point t and also very near t. In any
case, the user should see the error message for details.

CV TOO CLOSE The initial time t0 and the final time tout are too close to each other
and the user did not specify an initial step size.

CV TOO MUCH WORK The solver took mxstep internal steps but still could not reach tout.
The default value for mxstep is MXSTEP DEFAULT = 500.

CV TOO MUCH ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

CV ERR FAILURE Either error test failures occurred too many times (MXNEF = 7) dur-
ing one internal time step, or with |h| = hmin.

CV CONV FAILURE Either convergence test failures occurred too many times (MXNCF =

10) during one internal time step, or with |h| = hmin.

CV LINIT FAIL The linear solver’s initialization function failed.

CV LSETUP FAIL The linear solver’s setup function failed in an unrecoverable manner.

CV LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

CV RHSFUNC FAIL The right-hand side function failed in an unrecoverable manner.

CV FIRST RHSFUNC FAIL The right-hand side function had a recoverable error at the
first call.

CV REPTD RHSFUNC ERR Convergence test failures occurred too many times due to re-
peated recoverable errors in the right-hand side function. This flag
will also be returned if the right-hand side function had repeated
recoverable errors during the estimation of an initial step size.

CV UNREC RHSFUNC ERR The right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
right-hand side function fails recoverably after an error test failed
while at order one.

CV RTFUNC FAIL The rootfinding function failed.

Notes The vector yout can occupy the same space as the vector y0 of initial conditions that
was passed to CVodeInit.

In the CV ONE STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

All failure return values are negative and so the test flag < 0 will trap all CVode

failures.

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

4.5.6 Optional input functions

There are numerous optional input parameters that control the behavior of the cvode solver. cvode

provides functions that can be used to change these optional input parameters from their default
values. Table 4.1 lists all optional input functions in cvode which are then described in detail in the
remainder of this section, begining with those for the main cvode solver and continuing with those
for the linear solver modules. Note that the diagonal linear solver module has no optional inputs. For
the most casual use of cvode, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. We also note that all error return values are negative, so the test flag < 0

will catch all errors.
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Table 4.1: Optional inputs for cvode, cvdls, cvsls, and cvspils

Optional input Function name Default
CVODE main solver

Pointer to an error file CVodeSetErrFile stderr

Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL

Maximum order for BDF method CVodeSetMaxOrd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before tout CVodeSetMaxNumSteps 500
Maximum no. of warnings for tn + h = tn CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet FALSE

Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep ∞
Value of tstop CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
Nonlinear iteration type CVodeSetIterType none
Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn none

CVDLS linear solvers
Dense Jacobian function CVDlsSetDenseJacFn DQ
Band Jacobian function CVDlsSetBandJacFn DQ

CVSLS linear solvers
Sparse Jacobian function CVSlsSetSparseJacFn none
Sparse matrix ordering algorithm CVKLUSetOrdering 1 for COLAMD
Sparse matrix ordering algorithm CVSuperLUMTSetOrdering 3 for COLAMD

CVSPILS linear solvers
Preconditioner functions CVSpilsSetPreconditioner NULL, NULL
Jacobian-times-vector function CVSpilsSetJacTimesVecFn DQ
Preconditioning type CVSpilsSetPrecType none
Ratio between linear and nonlinear tolerances CVSpilsSetEpsLin 0.05
Type of Gram-Schmidt orthogonalization(a) CVSpilsSetGSType classical GS
Maximum Krylov subspace size(b) CVSpilsSetMaxl 5

(a) Only for cvspgmr
(b) Only for cvspbcg and cvsptfqmr
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4.5.6.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later
error message.

CVodeSetErrFile

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies a pointer to the file where all cvode messages
should be directed when the default cvode error handler function is used.

Arguments cvode mem (void *) pointer to the cvode memory block.

errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value of NULL disables all future error message output (except for the case in
which the cvode memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.

If CVodeSetErrFile is to be called, it should be called before any other optional input !

functions, in order to take effect for any later error message.

CVodeSetErrHandlerFn

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh data);

Description The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvode mem (void *) pointer to the cvode memory block.

ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).

eh data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of

CV SUCCESS The function ehfun and data pointer eh data have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Error messages indicating that the cvode solver memory is NULL will always be directed
to stderr.

CVodeSetUserData

Call flag = CVodeSetUserData(cvode mem, user data);

Description The function CVodeSetUserData specifies the user data block user data and attaches
it to the main cvode memory block.

Arguments cvode mem (void *) pointer to the cvode memory block.

user data (void *) pointer to the user data.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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Notes If specified, the pointer to user data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user data is needed in user preconditioner functions, the call to CVodeSetUserData !

must be made before the call to specify the linear solver.

CVodeSetMaxOrd

Call flag = CVodeSetMaxOrder(cvode mem, maxord);

Description The function CVodeSetMaxOrder specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxord (int) value of the maximum method order. This must be positive.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The specified value maxord is ≤ 0, or larger than its previous value.

Notes The default value is ADAMS Q MAX = 12 for the Adams-Moulton method and BDF Q MAX

= 5 for the BDF method. Since maxord affects the memory requirements for the internal
cvode memory block, its value cannot be increased past its previous value.

An input value greater than the default will result in the default value.

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the cvode memory block.

mxsteps (long int) maximum allowed number of steps.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Passing mxsteps = 0 results in cvode using the default value (500).

Passing mxsteps < 0 disables the test (not recommended).

CVodeSetMaxHnilWarns

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that t + h = t on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

mxhnil (int) maximum number of warning messages (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.
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CVodeSetStabLimDet

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.

Arguments cvode mem (void *) pointer to the cvode memory block.

stldet (booleantype) flag controlling stability limit detection (TRUE = on; FALSE
= off).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The linear multistep method is not set to CV BDF.

Notes The default value is FALSE. If stldet = TRUE when BDF is used and the method order
is greater than or equal to 3, then an internal function, CVsldet, is called to detect a
possible stability limit. If such a limit is detected, then the order is reduced.

CVodeSetInitStep

Call flag = CVodeSetInitStep(cvode mem, hin);

Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvode mem (void *) pointer to the cvode memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use
the default value.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes By default, cvode estimates the initial step size to be the solution h of the equation
‖0.5h2ÿ‖WRMS = 1, where ÿ is an estimated second derivative of the solution at t0.

CVodeSetMinStep

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvode memory block.

hmin (realtype) minimum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.

Notes The default value is 0.0.

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax);

Description The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the cvode memory block.
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hmax (realtype) maximum absolute value of the step size (≥ 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT Either hmax is nonpositive or it is smaller than the minimum allowable
step size.

Notes Pass hmax = 0.0 to obtain the default value ∞.

CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable t past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the cvode memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The value of tstop is not beyond the current t value, tn.

Notes The default, if this routine is not called, is that no stop time is imposed.

CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 7.

CVodeSetMaxNonlinIters

Call flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

Description The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 3.
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CVodeSetMaxConvFails

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvode mem (void *) pointer to the cvode memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step (> 0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 10.

CVodeSetNonlinConvCoef

Call flag = CVodeSetNonlinConvCoef(cvode mem, nlscoef);

Description The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

Arguments cvode mem (void *) pointer to the cvode memory block.

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The default value is 0.1.

CVodeSetIterType

Call flag = CVodeSetIterType(cvode mem, iter);

Description The function CVodeSetIterType resets the nonlinear solver iteration type to iter.

Arguments cvode mem (void *) pointer to the cvode memory block.

iter (int) specifies the type of nonlinear solver iteration and may be either
CV NEWTON or CV FUNCTIONAL.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT The iter value passed is neither CV NEWTON nor CV FUNCTIONAL.

Notes The nonlinear solver iteration type is initially specified in the call to CVodeCreate (see
§4.5.1). This function call is needed only if iter is being changed from its value in the
prior call to CVodeCreate.

4.5.6.2 Dense/band direct linear solvers optional input functions

The cvdense solver needs a function to compute a dense approximation to the Jacobian matrix
J(t, y). This function must be of type CVDlsDenseJacFn. The user can supply his/her own dense
Jacobian function, or use the default internal difference quotient approximation that comes with the
cvdense solver. To specify a user-supplied Jacobian function djac, cvdense provides the function
CVDlsSetDenseJacFn. The cvdense solver passes the pointer user data to the dense Jacobian
function. This allows the user to create an arbitrary structure with relevant problem data and access
it during the execution of the user-supplied Jacobian function, without using global data in the
program. The pointer user data may be specified through CVodeSetUserData.
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CVDlsSetDenseJacFn

Call flag = CVDlsSetDenseJacFn(cvode mem, djac);

Description The function CVDlsSetDenseJacFn specifies the dense Jacobian approximation function
to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.

djac (CVDlsDenseJacFn) user-defined dense Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdense linear solver has not been initialized.

Notes By default, cvdense uses an internal difference quotient function. If NULL is passed to
djac, this default function is used.

The function type CVDlsDenseJacFn is described in §4.6.5.

The cvband solver needs a function to compute a banded approximation to the Jacobian matrix
J(t, y). This function must be of type CVDlsBandJacFn. The user can supply his/her own banded
Jacobian approximation function, or use the default internal difference quotient approximation that
comes with the cvband solver. To specify a user-supplied Jacobian function bjac, cvband provides
the function CVDlsSetBandJacFn. The cvband solver passes the pointer user data to the banded
Jacobian approximation function. This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian function, without using
global data in the program. The pointer user data may be specified through CVodeSetUserData.

CVDlsSetBandJacFn

Call flag = CVDlsSetBandJacFn(cvode mem, bjac);

Description The function CVDlsSetBandJacFn specifies the banded Jacobian approximation function
to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.

bjac (CVBandJacFn) user-defined banded Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvband linear solver has not been initialized.

Notes By default, cvband uses an internal difference quotient function. If NULL is passed to
bjac, this default function is used.

The function type CVBandJacFn is described in §4.6.6.

4.5.6.3 Sparse direct linear solvers optional input functions

The cvklu and cvsuperlumt solvers require a function to compute a compressed-sparse-column
approximation to the Jacobian matrix J(t, y). This function must be of type CVSlsSparseJacFn.
The user must supply a custom sparse Jacobian function since a difference-quotient approximation
would not leverage the underlying sparse matrix structure of the problem. To specify a user-supplied
Jacobian function sjac, cvklu and cvsuperlumt provide the function CVSlsSetSparseJacFn. The
cvklu and cvsuperlumt solvers pass the pointer user data to the sparse Jacobian function. This
mechanism allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied Jacobian function, without using global data in the program.
The pointer user data may be specified through CVodeSetUserData.
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CVSlsSetSparseJacFn

Call flag = CVSlsSetSparseJacFn(cvode mem, sjac);

Description The function CVSlsSetSparseJacFn specifies the sparse Jacobian approximation func-
tion to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.

sjac (CVSlsSparseJacFn) user-defined sparse Jacobian approximation function.

Return value The return value flag (of type int) is one of

CVSLS SUCCESS The sparse Jacobian routine pointer has been successfully set.

CVSLS MEM NULL The cvode mem pointer is NULL.

CVSLS LMEM NULL The cvklu or cvsuperlumt linear solver has not been initialized.

Notes The function type CVSlsSparseJacFn is described in §4.6.7.

When using a sparse direct solver, there may be instances when the number of state variables does
not change, but the number of nonzeroes in the Jacobian does change. In this case, for the cvklu

solver, we provide the following reinitialization function. This function reinitializes the Jacobian
matrix memory for the new number of nonzeroes and sets flags for a new factorization (symbolic and
numeric) to be conducted at the next solver setup call. This routine is useful in the cases where the
number of nonzeroes has changed, or where the structure of the linear system has changed, requiring
a new symbolic (and numeric) factorization.

CVKLUReInit

Call flag = CVKLUReInit(cv mem, n, nnz, reinit type);

Description The function CVKLUReInit reinitializes Jacobian matrix memory and flags for new sym-
bolic and numeric KLU factorizations.

Arguments cv mem (void *) pointer to the cvode memory block.

n (int) number of state variables in the system.

nnz (int) number of nonzeroes in the Jacobian matrix.

reinit type (int) type of reinitialization:

1 The Jacobian matrix will be destroyed and a new one will be allocated
based on the nnz value passed to this call. New symbolic and numeric
factorizations will be completed at the next solver setup.

2 Only symbolic and numeric factorizations will be completed. It is assumed
that the Jacobian size has not exceeded the size of nnz given in the prior
call to cvklu.

Return value The return value flag (of type int) is one of

CVSLS SUCCESS The reinitialization succeeded.

CVSLS MEM NULL The cv mem pointer is NULL.

CVSLS LMEM NULL The cvklu linear solver has not been initialized.

CVSLS ILL INPUT The given reinit type has an illegal value.

CVSLS MEM FAIL A memory allocation failed.

Notes The default value for reinit type is 2.

Both the cvklu and cvsuperlumt solvers can apply reordering algorithms to minimize fill-in for the
resulting sparse LU decomposition internal to the solver. The approximate minimal degree ordering
for nonsymmetric matrices given by the COLAMD algorithm is the default algorithm used within both
solvers, but alternate orderings may be chosen through one of the following two functions. The input
values to these functinos are the numeric values used in the respective packages, and the user-supplied
value will be passed directly to the package.
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CVKLUSetOrdering

Call flag = CVKLUSetOrdering(cv mem, ordering choice);

Description The function CVKLUSetOrdering specifies the ordering algorithm used by cvklu for
reducing fill.

Arguments cv mem (void *) pointer to the cvode memory block.

ordering choice (int) flag denoting algorithm choice:

0 AMD

1 COLAMD

2 natural ordering

Return value The return value flag (of type int) is one of

CVSLS SUCCESS The optional value has been successfully set.

CVSLS MEM NULL The cv mem pointer is NULL.

CVSLS ILL INPUT The supplied value of ordering choice is illegal.

Notes The default ordering choice is 1 for COLAMD.

CVSuperLUMTSetOrdering

Call flag = CVSuperLUMTSetOrdering(cv mem, ordering choice);

Description The function CVSuperLUMTSetOrdering specifies the ordering algorithm used by cvsu-

perlumt for reducing fill.

Arguments cv mem (void *) pointer to the cvode memory block.

ordering choice (int) flag denoting algorithm choice:

0 natural ordering

1 minimal degree ordering on JT J

2 minimal degree ordering on JT + J

3 COLAMD

Return value The return value flag (of type int) is one of

CVSLS SUCCESS The optional value has been successfully set.

CVSLS MEM NULL The cv mem pointer is NULL.

CVSLS ILL INPUT The supplied value of ordering choice is illegal.

Notes The default ordering choice is 3 for COLAMD.

4.5.6.4 Iterative linear solvers optional input functions

If any preconditioning is to be done within one of the cvspils linear solvers, then the user must supply
a preconditioner solve function psolve and specify its name in a call to CVSpilsSetPreconditioner.

The evaluation and preprocessing of any Jacobian-related data needed by the user’s precondi-
tioner solve function is done in the optional user-supplied function psetup. Both of these func-
tions are fully specified in §4.6. If used, the psetup function should also be specified in the call to
CVSpilsSetPreconditioner.

The pointer user data received through CVodeSetUserData (or a pointer to NULL if user data

was not specified) is passed to the preconditioner psetup and psolve functions. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied preconditioner functions without using global data in the program.

Ther cvspils solvers require a function to compute an approximation to the product between
the Jacobian matrix J(t, y) and a vector v. The user can supply his/her own Jacobian-times-vector
approximation function, or use the default internal difference quotient function that comes with the
cvspils solvers. A user-defined Jacobian-vector function must be of type CVSpilsJacTimesVecFn
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and can be specified through a call to CVSpilsSetJacTimesVecFn (see §4.6.8 for specification de-
tails). As with the preconditioner user-supplied functions, a pointer to the user-defined data struc-
ture, user data, specified through CVodeSetUserData (or a NULL pointer otherwise) is passed to the
Jacobian-times-vector function jtimes each time it is called.

CVSpilsSetPreconditioner

Call flag = CVSpilsSetPreconditioner(cvode mem, psetup, psolve);

Description The function CVSpilsSetPreconditioner specifies the preconditioner setup and solve
functions.

Arguments cvode mem (void *) pointer to the cvode memory block.

psetup (CVSpilsPrecSetupFn) user-defined preconditioner setup function. Pass
NULL if no setup is to be done.

psolve (CVSpilsPrecSolveFn) user-defined preconditioner solve function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional values have been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The function type CVSpilsPrecSolveFn is described in §4.6.9. The function type
CVSpilsPrecSetupFn is described in §4.6.10.

CVSpilsSetJacTimesVecFn

Call flag = CVSpilsSetJacTimesVecFn(cvode mem, jtimes);

Description The function CVSpilsSetJacTimesFn specifies the Jacobian-vector function to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.

jtimes (CVSpilsJacTimesVecFn) user-defined Jacobian-vector product function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes By default, the cvspils linear solvers use an internal difference quotient function. If
NULL is passed to jtimes, this default function is used.

The function type CVSpilsJacTimesVecFn is described in §4.6.8.

CVSpilsSetPrecType

Call flag = CVSpilsSetPrecType(cvode mem, pretype);

Description The function CVSpilsSetPrecType resets the type of preconditioning to be used.

Arguments cvode mem (void *) pointer to the cvode memory block.

pretype (int) specifies the type of preconditioning and must be one of: PREC NONE,
PREC LEFT, PREC RIGHT, or PREC BOTH.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The preconditioner type pretype is not valid.
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Notes The preconditioning type is initially set in the call to the linear solver’s specification
function (see §4.5.3). This function call is needed only if pretype is being changed from
its original value.

CVSpilsSetGSType

Call flag = CVSpilsSetGSType(cvode mem, gstype);

Description The function CVSpilsSetGSType specifies the Gram-Schmidt orthogonalization to be
used with the cvspgmr solver (one of the enumeration constants MODIFIED GS or
CLASSICAL GS). These correspond to using modified Gram-Schmidt and classical Gram-
Schmidt, respectively.

Arguments cvode mem (void *) pointer to the cvode memory block.

gstype (int) type of Gram-Schmidt orthogonalization.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The value of gstype is not valid.

Notes The default value is MODIFIED GS.

This option is available only for the cvspgmr linear solver.!

CVSpilsSetEpsLin

Call flag = CVSpilsSetEpsLin(cvode mem, eplifac);

Description The function CVSpilsSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the Newton iteration test constant.

Arguments cvode mem (void *) pointer to the cvode memory block.

eplifac (realtype) linear convergence safety factor (≥ 0.0).

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSPILS ILL INPUT The factor eplifac is negative.

Notes The default value is 0.05.

Passing a value eplifac= 0.0 also indicates using the default value.

CVSpilsSetMaxl

Call flag = CVSpilsSetMaxl(cv mem, maxl);

Description The function CVSpilsSetMaxl resets the maximum Krylov subspace dimension for the
Bi-CGStab or TFQMR methods.

Arguments cv mem (void *) pointer to the cvode memory block.

maxl (int) maximum dimension of the Krylov subspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.
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CVSPILS ILL INPUT The current linear solver is SPGMR.

Notes The maximum subspace dimension is initially specified in the call to the linear solver
specification function (see §4.5.3). This function call is needed only if maxl is being
changed from its previous value.

An input value maxl ≤ 0 will result in the default value, 5.

This option is available only for the cvspbcg and cvsptfqmr linear solvers. !

4.5.6.5 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

CVodeSetRootDirection

Call flag = CVodeSetRootDirection(cvode mem, rootdir);

Description The function CVodeSetRootDirection specifies the direction of zero-crossings to be
located and returned.

Arguments cvode mem (void *) pointer to the cvode memory block.

rootdir (int *) state array of length nrtfn, the number of root functions gi, as spec-
ified in the call to the function CVodeRootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction for gi should be reported. A value
of +1 or −1 indicates that the solver should report only zero-crossings where
gi is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CV ILL INPUT rootfinding has not been activated through a call to CVodeRootInit.

Notes The default behavior is to monitor for both zero-crossing directions.

CVodeSetNoInactiveRootWarn

Call flag = CVodeSetNoInactiveRootWarn(cvode mem);

Description The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

Arguments cvode mem (void *) pointer to the cvode memory block.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes cvode will not report the initial conditions as a possible zero-crossing (assuming that
one or more components gi are zero at the initial time). However, if it appears that
some gi is identically zero at the initial time (i.e., gi is zero at the initial time and after
the first step), cvode will issue a warning which can be disabled with this optional
input function.

4.5.7 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by cvode.

The call to the CVodeGetDky function has the following form:



46 Using CVODE for C Applications

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d(k)y/dt(k)(t), where tn−hu ≤ t ≤ tn, tn denotes the current internal time reached, and
hu is the last internal step size successfully used by the solver. The user may request k
= 0, 1, . . . , qu, where qu is the current order (optional output qlast).

Arguments cvode mem (void *) pointer to the cvode memory block.

t (realtype) the value of the independent variable at which the derivative is
to be evaluated.

k (int) the derivative order requested.

dky (N Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV SUCCESS CVodeGetDky succeeded.

CV BAD K k is not in the range 0, 1, . . . , qu.

CV BAD T t is not in the interval [tn − hu, tn].

CV BAD DKY The dky argument was NULL.

CV MEM NULL The cvode mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to tn, qu, and hu, respectively.

4.5.8 Optional output functions

cvode provides an extensive set of functions that can be used to obtain solver performance informa-
tion. Table 4.2 lists all optional output functions in cvode, which are then described in detail in the
remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the cvode solver is in doing its job. For example, the counters nsteps and nfevals

provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps

measures the performance of the Newton iteration in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a direct
linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure the
overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.8.1 Main solver optional output functions

cvode provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the cvode memory block (a suggested tolerance scaling factor, the
error weight vector, and the vector of estimated local errors). Functions are also provided to extract
statistics related to the performance of the cvode nonlinear solver used. As a convenience, addi-
tional information extraction functions provide the optional outputs in groups. These optional output
functions are described next.
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Table 4.2: Optional outputs from cvode, cvdls, cvdiag, cvsls, and cvspils

Optional output Function name
CVODE main solver

Size of cvode real and integer workspaces CVodeGetWorkSpace

Cumulative number of internal steps CVodeGetNumSteps

No. of calls to r.h.s. function CVodeGetNumRhsEvals

No. of calls to linear solver setup function CVodeGetNumLinSolvSetups

No. of local error test failures that have occurred CVodeGetNumErrTestFails

Order used during the last step CVodeGetLastOrder

Order to be attempted on the next step CVodeGetCurrentOrder

No. of order reductions due to stability limit detection CVodeGetNumStabLimOrderReds

Actual initial step size used CVodeGetActualInitStep

Step size used for the last step CVodeGetLastStep

Step size to be attempted on the next step CVodeGetCurrentStep

Current internal time reached by the solver CVodeGetCurrentTime

Suggested factor for tolerance scaling CVodeGetTolScaleFactor

Error weight vector for state variables CVodeGetErrWeights

Estimated local error vector CVodeGetEstLocalErrors

No. of nonlinear solver iterations CVodeGetNumNonlinSolvIters

No. of nonlinear convergence failures CVodeGetNumNonlinSolvConvFails

All cvode integrator statistics CVodeGetIntegratorStats

cvode nonlinear solver statistics CVodeGetNonlinSolvStats

Array showing roots found CvodeGetRootInfo

No. of calls to user root function CVodeGetNumGEvals

Name of constant associated with a return flag CVodeGetReturnFlagName

CVDLS linear solvers
Size of real and integer workspaces CVDlsGetWorkSpace

No. of Jacobian evaluations CVDlsGetNumJacEvals

No. of r.h.s. calls for finite diff. Jacobian evals. CVDlsGetNumRhsEvals

Last return from a linear solver function CVDlsGetLastFlag

Name of constant associated with a return flag CVDlsGetReturnFlagName

CVDIAG linear solver
Size of cvdiag real and integer workspaces CVDiagGetWorkSpace

No. of r.h.s. calls for finite diff. Jacobian evals. CVDiagGetNumRhsEvals

Last return from a cvdiag function CVDiagGetLastFlag

Name of constant associated with a return flag CVDiagGetReturnFlagName

CVSLS linear solvers
No. of Jacobian evaluations CVSlsGetNumJacEvals

Last return from a linear solver function CVSlsGetLastFlag

Name of constant associated with a return flag CVSlsGetReturnFlagName

CVSPILS linear solvers
Size of real and integer workspaces CVSpilsGetWorkSpace

No. of linear iterations CVSpilsGetNumLinIters

No. of linear convergence failures CVSpilsGetNumConvFails

No. of preconditioner evaluations CVSpilsGetNumPrecEvals

No. of preconditioner solves CVSpilsGetNumPrecSolves

No. of Jacobian-vector product evaluations CVSpilsGetNumJtimesEvals

No. of r.h.s. calls for finite diff. Jacobian-vector evals. CVSpilsGetNumRhsEvals

Last return from a linear solver function CVSpilsGetLastFlag

Name of constant associated with a return flag CVSpilsGetReturnFlagName
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CVodeGetWorkSpace

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);

Description The function CVodeGetWorkSpace returns the cvode real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrw (long int) the number of realtype values in the cvode workspace.

leniw (long int) the number of integer values in the cvode workspace.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes In terms of the problem size N , the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.4), the actual size of the real workspace, in realtype

words, is given by the following:

• base value: lenrw = 96 + (maxord+5) ∗ Nr + 3∗nrtfn;
• using CVodeSVtolerances: lenrw = lenrw +Nr;

where Nr is the number of real words in one N Vector (≈ N).

The size of the integer workspace (without distinction between int and long int words)
is given by:

• base value: leniw = 40 + (maxord+5) ∗ Ni + nrtfn;

• using CVodeSVtolerances: leniw = leniw +Ni;

where Ni is the number of integer words in one N Vector (= 1 for nvector serial

and 2*npes for nvector parallel and npes processors).

For the default value of maxord, no rootfinding, and without using CVodeSVtolerances,
these lengths are given roughly by:

• For the Adams method: lenrw = 96 + 17N and leniw = 57

• For the BDF method: lenrw = 96 + 10N and leniw = 50

CVodeGetNumSteps

Call flag = CVodeGetNumSteps(cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the cvode memory block.

nsteps (long int) number of steps taken by cvode.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumRhsEvals

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevals (long int) number of calls to the user’s f function.
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Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to f by a linear solver or preconditioner module.

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvode mem (void *) pointer to the cvode memory block.

nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the cvode memory block.

netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetLastOrder

Call flag = CVodeGetLastOrder(cvode mem, &qlast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder(cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvode mem (void *) pointer to the cvode memory block.

hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvode mem (void *) pointer to the cvode memory block.

hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by cvode to ensure
that the step size is within the prescribed bounds (hmin ≤ h0 ≤ hmax), or to satisfy the
local error test condition.

CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the cvode memory block.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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CVodeGetNumStabLimOrderReds

Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

Arguments cvode mem (void *) pointer to the cvode memory block.

nslred (long int) number of order reductions due to stability limit detection.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

CVodeGetTolScaleFactor

Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments cvode mem (void *) pointer to the cvode memory block.

tolsfac (realtype) suggested scaling factor for user-supplied tolerances.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the Wi given by (2.6).

Arguments cvode mem (void *) pointer to the cvode memory block.

eweight (N Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes The user must allocate memory for eweight. !

CVodeGetEstLocalErrors

Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.

Arguments cvode mem (void *) pointer to the cvode memory block.

ele (N Vector) estimated local errors.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.
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Notes The user must allocate memory for ele. !

The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight[i]*ele[i].

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,

&nlinsetups, &netfails, &qlast, &qcur,

&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the cvode integrator statistics as a
group.

Arguments cvode mem (void *) pointer to the cvode memory block.

nsteps (long int) number of steps taken by cvode.

nfevals (long int) number of calls to the user’s f function.

nlinsetups (long int) number of calls made to the linear solver setup function.

netfails (long int) number of error test failures.

qlast (int) method order used on the last internal step.

qcur (int) method order to be used on the next internal step.

hinused (realtype) actual value of initial step size.

hlast (realtype) step size taken on the last internal step.

hcur (realtype) step size to be attempted on the next internal step.

tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV SUCCESS the optional output values have been successfully set.

CV MEM NULL the cvode mem pointer is NULL.

CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear (func-
tional or Newton) iterations performed.

Arguments cvode mem (void *) pointer to the cvode memory block.

nniters (long int) number of nonlinear iterations performed.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNumNonlinSolvConvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvode mem (void *) pointer to the cvode memory block.
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nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the cvode nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the cvode memory block.

nniters (long int) number of nonlinear iterations performed.

nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName(flag);

Description The function CVodeGetReturnFlagName returns the name of the cvode constant cor-
responding to flag.

Arguments The only argument, of type int, is a return flag from a cvode function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.2 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.

Arguments cvode mem (void *) pointer to the cvode memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions gi

found to have a root. For i = 0, . . . ,nrtfn−1, rootsfound[i]6= 0 if gi has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output values have been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

Notes Note that, for the components gi for which a root was found, the sign of rootsfound[i]
indicates the direction of zero-crossing. A value of +1 indicates that gi is increasing,
while a value of −1 indicates a decreasing gi.

The user must allocate memory for the vector rootsfound. !
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CVodeGetNumGEvals

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvode mem (void *) pointer to the cvode memory block.

ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV SUCCESS The optional output value has been successfully set.

CV MEM NULL The cvode mem pointer is NULL.

4.5.8.3 Dense/band direct linear solvers optional output functions

The following optional outputs are available from the cvdls modules: workspace requirements, num-
ber of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian approximation, and last return value from a cvdls function. Note that, where the name of
an output would otherwise conflict with the name of an optional output from the main solver, a suffix
LS (for Linear Solver) has been added here (e.g. lenrwLS).

CVDlsGetWorkSpace

Call flag = CVDlsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDlsGetWorkSpace returns the sizes of the real and integer workspaces
used by a cvdls linear solver (cvdense or cvband).

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwLS (long int) the number of realtype values in the cvdls workspace.

leniwLS (long int) the number of integer values in the cvdls workspace.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output values have been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes For the cvdense linear solver, in terms of the problem size N , the actual size of the real
workspace is 2N2 realtype words, and the actual size of the integer workspace is N in-
teger words. For the cvband linear solver, in terms of N and Jacobian half-bandwidths,
the actual size of the real workspace is (2 mupper+3 mlower+2)N realtype words, and
the actual size of the integer workspace is N integer words.

CVDlsGetNumJacEvals

Call flag = CVDlsGetNumJacEvals(cvode mem, &njevals);

Description The function CVDlsGetNumJacEvals returns the number of calls made to the cvdls

(dense or band) Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvode memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.



4.5 User-callable functions 55

CVDlsGetNumRhsEvals

Call flag = CVDlsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDlsGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference (dense or band) Jacobian
approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default internal difference quotient
function is used.

CVDlsGetLastFlag

Call flag = CVDlsGetLastFlag(cvode mem, &lsflag);

Description The function CVDlsGetLastFlag returns the last return value from a cvdls routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (long int) the value of the last return flag from a cvdls function.

Return value The return value flag (of type int) is one of

CVDLS SUCCESS The optional output value has been successfully set.

CVDLS MEM NULL The cvode mem pointer is NULL.

CVDLS LMEM NULL The cvdls linear solver has not been initialized.

Notes If the cvdense setup function failed (CVode returned CV LSETUP FAIL), then the value
of lsflag is equal to the column index (numbered from one) at which a zero diagonal
element was encountered during the LU factorization of the (dense or banded) Jacobian
matrix. For all other failures, lsflag is negative.

CVDlsGetReturnFlagName

Call name = CVDlsGetReturnFlagName(lsflag);

Description The function CVDlsGetReturnFlagName returns the name of the cvdls constant corre-
sponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdls function.

Return value The return value is a string containing the name of the corresponding constant.

If 1 ≤ lsflag ≤ N (LU factorization failed), this routine returns “NONE”.

4.5.8.4 Diagonal linear solver optional output functions

The following optional outputs are available from the cvdiag module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a cvdiag function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwLS).
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CVDiagGetWorkSpace

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVDiagGetWorkSpace returns the cvdiag real and integer workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwLS (long int) the number of realtype values in the cvdiag workspace.

leniwLS (long int) the number of integer values in the cvdiag workspace.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output valus have been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes In terms of the problem size N , the actual size of the real workspace is roughly 3N
realtype words.

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVDiagGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function due to the finite difference Jacobian approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

CVDiagGetLastFlag

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);

Description The function CVDiagGetLastFlag returns the last return value from a cvdiag routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (long int) the value of the last return flag from a cvdiag function.

Return value The return value flag (of type int) is one of

CVDIAG SUCCESS The optional output value has been successfully set.

CVDIAG MEM NULL The cvode mem pointer is NULL.

CVDIAG LMEM NULL The cvdiag linear solver has not been initialized.

Notes If the cvdiag setup function failed (CVode returned CV LSETUP FAIL), the value of
lsflag is equal to CVDIAG INV FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the cvdiag solve function failed
(CVode returned CV LSOLVE FAIL).
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CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(lsflag);

Description The function CVDiagGetReturnFlagName returns the name of the cvdiag constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvdiag function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.8.5 Sparse direct linear solvers optional output functions

The following optional outputs are available from the cvsls modules: number of calls to the Jacobian
routine and last return value from a cvsls function.

CVSlsGetNumJacEvals

Call flag = CVSlsGetNumJacEvals(cvode mem, &njevals);

Description The function CVSlsGetNumJacEvals returns the number of calls made to the cvsls

sparse Jacobian approximation function.

Arguments cvode mem (void *) pointer to the cvode memory block.

njevals (long int) the number of calls to the Jacobian function.

Return value The return value flag (of type int) is one of

CVSLS SUCCESS The optional output value has been successfully set.

CVSLS MEM NULL The cvode mem pointer is NULL.

CVSLS LMEM NULL The cvsls linear solver has not been initialized.

CVSlsGetLastFlag

Call flag = CVSlsGetLastFlag(cvode mem, &lsflag);

Description The function CVSlsGetLastFlag returns the last return value from a cvsls routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (long int) the value of the last return flag from a cvsls function.

Return value The return value flag (of type int) is one of

CVSLS SUCCESS The optional output value has been successfully set.

CVSLS MEM NULL The cvode mem pointer is NULL.

CVSLS LMEM NULL The cvsls linear solver has not been initialized.

Notes

CVSlsGetReturnFlagName

Call name = CVSlsGetReturnFlagName(lsflag);

Description The function CVSlsGetReturnFlagName returns the name of the cvsls constant corre-
sponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvsls function.

Return value The return value is a string containing the name of the corresponding constant.
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4.5.8.6 Iterative linear solvers optional output functions

The following optional outputs are available from the cvspils modules: workspace requirements,
number of linear iterations, number of linear convergence failures, number of calls to the preconditioner
setup and solve routines, number of calls to the Jacobian-vector product routine, number of calls to the
right-hand side routine for finite-difference Jacobian-vector product approximation, and last return
value from a linear solver function. Note that, where the name of an output would otherwise conflict
with the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been
added here (e.g. lenrwLS).

CVSpilsGetWorkSpace

Call flag = CVSpilsGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVSpilsGetWorkSpace returns the global sizes of the cvspils real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwLS (long int) the number of realtype values in the cvspils workspace.

leniwLS (long int) the number of integer values in the cvspils workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes In terms of the problem size N and maximum subspace size maxl, the actual size of the
real workspace is roughly:
(maxl+5) ∗ N+ maxl ∗( maxl+4) + 1 realtype words for cvspgmr,
9 ∗ N realtype words for cvspbcg,
and 11 ∗ N realtype words for cvsptfqmr.

In a parallel setting, the above values are global, summed over all processors.

CVSpilsGetNumLinIters

Call flag = CVSpilsGetNumLinIters(cvode mem, &nliters);

Description The function CVSpilsGetNumLinIters returns the cumulative number of linear itera-
tions.

Arguments cvode mem (void *) pointer to the cvode memory block.

nliters (long int) the current number of linear iterations.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumConvFails

Call flag = CVSpilsGetNumConvFails(cvode mem, &nlcfails);

Description The function CVSpilsGetNumConvFails returns the cumulative number of linear con-
vergence failures.

Arguments cvode mem (void *) pointer to the cvode memory block.

nlcfails (long int) the current number of linear convergence failures.

Return value The return value flag (of type int) is one of
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CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecEvals

Call flag = CVSpilsGetNumPrecEvals(cvode mem, &npevals);

Description The function CVSpilsGetNumPrecEvals returns the number of preconditioner evalua-
tions, i.e., the number of calls made to psetup with jok = FALSE.

Arguments cvode mem (void *) pointer to the cvode memory block.

npevals (long int) the current number of calls to psetup.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumPrecSolves

Call flag = CVSpilsGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVSpilsGetNumPrecSolves returns the cumulative number of calls made
to the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the cvode memory block.

npsolves (long int) the current number of calls to psolve.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumJtimesEvals

Call flag = CVSpilsGetNumJtimesEvals(cvode mem, &njvevals);

Description The function CVSpilsGetNumJtimesEvals returns the cumulative number made to the
Jacobian-vector function, jtimes.

Arguments cvode mem (void *) pointer to the cvode memory block.

njvevals (long int) the current number of calls to jtimes.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

CVSpilsGetNumRhsEvals

Call flag = CVSpilsGetNumRhsEvals(cvode mem, &nfevalsLS);

Description The function CVSpilsGetNumRhsEvals returns the number of calls to the user right-
hand side function for finite difference Jacobian-vector product approximation.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsLS (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of
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CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes The value nfevalsLS is incremented only if the default CVSpilsDQJtimes difference
quotient function is used.

CVSpilsGetLastFlag

Call flag = CVSpilsGetLastFlag(cvode mem, &lsflag);

Description The function CVSpilsGetLastFlag returns the last return value from a cvspils routine.

Arguments cvode mem (void *) pointer to the cvode memory block.

lsflag (long int) the value of the last return flag from a cvspils function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer is NULL.

CVSPILS LMEM NULL The cvspils linear solver has not been initialized.

Notes If the cvspils setup function failed (CVode returned CV LSETUP FAIL), lsflag will be
SPGMR PSET FAIL UNREC, SPBCG PSET FAIL UNREC, or SPTFQMR PSET FAIL UNREC.

If the cvspgmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from SpgmrSolve and will be one of: SPGMR MEM NULL, indicating
that the spgmr memory is NULL; SPGMR ATIMES FAIL UNREC, indicating an unrecover-
able failure in the J ∗v function; SPGMR PSOLVE FAIL UNREC, indicating that the precon-
ditioner solve function psolve failed unrecoverably; SPGMR GS FAIL, indicating a failure
in the Gram-Schmidt procedure; or SPGMR QRSOL FAIL, indicating that the matrix R
was found to be singular during the QR solve phase.

If the cvspbcg solve function failed (CVode returned CV LSOLVE FAIL), lsflag contains
the error return flag from SpbcgSolve and will be one of: SPBCG MEM NULL, indicating
that the spbcg memory is NULL; SPBCG ATIMES FAIL UNREC, indicating an unrecover-
able failure in the J ∗ v function; or SPBCG PSOLVE FAIL UNREC, indicating that the
preconditioner solve function psolve failed unrecoverably.

If the cvsptfqmr solve function failed (CVode returned CV LSOLVE FAIL), lsflag con-
tains the error return flag from SptfqmrSolve and will be one of: SPTFQMR MEM NULL,
indicating that the sptfqmr memory is NULL; SPTFQMR ATIMES FAIL UNREC, indicating
an unrecoverable failure in the J∗v function; or SPTFQMR PSOLVE FAIL UNREC, indicating
that the preconditioner solve function psolve failed unrecoverably.

CVSpilsGetReturnFlagName

Call name = CVSpilsGetReturnFlagName(lsflag);

Description The function CVSpilsGetReturnFlagName returns the name of the cvspils constant
corresponding to lsflag.

Arguments The only argument, of type long int, is a return flag from a cvspils function.

Return value The return value is a string containing the name of the corresponding constant.

4.5.9 CVODE reinitialization function

The function CVodeReInit reinitializes the main cvode solver for the solution of a problem, where a
prior call to CVodeInit been made. The new problem must have the same size as the previous one.
CVodeReInit performs the same input checking and initializations that CVodeInit does, but does no
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memory allocation as it assumes that the existing internal memory is sufficient for the new problem.
A call to CVodeReInit deletes the solution history that was stored internally during the previous
integration.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter lmm is unchanged (or changed from CV ADAMS to CV BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate CV*** calls, as de-
scribed in §4.5.3

CVodeReInit

Call flag = CVodeReInit(cvode mem, t0, y0);

Description The function CVodeReInit provides required problem specifications and reinitializes
cvode.

Arguments cvode mem (void *) pointer to the cvode memory block.

t0 (realtype) is the initial value of t.

y0 (N Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following:

CV SUCCESS The call to CVodeReInit was successful.

CV MEM NULL The cvode memory block was not initialized through a previous call to
CVodeCreate.

CV NO MALLOC Memory space for the cvode memory block was not allocated through
a previous call to CVodeInit.

CV ILL INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) a function that provides Jacobian-related information for the linear solver (if Newton
iteration is chosen), and (optionally) one or two functions that define the preconditioner for use in
any of the Krylov iterative algorithms.

4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

CVRhsFn

Definition typedef int (*CVRhsFn)(realtype t, N Vector y, N Vector ydot,

void *user data);

Purpose This function computes the ODE right-hand side for a given value of the independent
variable t and state vector y.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

ydot is the output vector f(t, y).

user data is the user data pointer passed to CVodeSetUserData.
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Return value A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvode will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV RHSFUNC FAIL is returned).

Notes Allocation of memory for ydot is handled within cvode.

A recoverable failure error return from the CVRhsFn is typically used to flag a value of
the dependent variable y that is “illegal” in some way (e.g., negative where only a non-
negative value is physically meaningful). If such a return is made, cvode will attempt
to recover (possibly repeating the Newton iteration, or reducing the step size) in order
to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step cannot
be undone.)

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case cvode returns CV FIRST RHSFUNC ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case cvode returns
CV UNREC RHSFUNC ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVSetErrFile), the user may provide a function of type CVErrHandlerFn to process
any such messages. The function type CVErrHandlerFn is defined as follows:

CVErrHandlerFn

Definition typedef void (*CVErrHandlerFn)(int error code, const char *module,

const char *function, char *msg,

void *eh data);

Purpose This function processes error and warning messages from cvode and its sub-modules.

Arguments error code is the error code.

module is the name of the cvode module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh data is a pointer to user data, the same as the eh data parameter passed to
CVodeSetErrHandlerFn.

Return value A CVErrHandlerFn function has no return value.

Notes error code is negative for errors and positive (CV WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm ‖ v‖WRMS =
√

(1/N)
∑N

1 (Wi · vi)2. These weights will be used in place of those defined by Eq. (2.6). The function

type CVEwtFn is defined as follows:
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CVEwtFn

Definition typedef int (*CVEwtFn)(N Vector y, N Vector ewt, void *user data);

Purpose This function computes the WRMS error weights for the vector y.

Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.

ewt is the output vector containing the error weights.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVEwtFn function type must return 0 if it successfully set the error weights and −1
otherwise.

Notes Allocation of memory for ewt is handled within cvode.

The error weight vector must have all components positive. It is the user’s responsiblity !

to perform this test and return −1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

CVRootFn

Definition typedef int (*CVRootFn)(realtype t, N Vector y, realtype *gout,

void *user data);

Purpose This function implements a vector-valued function g(t, y) such that the roots of the
nrtfn components gi(t, y) are sought.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, y(t).

gout is the output array, of length nrtfn, with components gi(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV RTFUNC FAIL).

Notes Allocation of memory for gout is automatically handled within cvode.

4.6.5 Jacobian information (direct method with dense Jacobian)

If the direct linear solver with dense treatment of the Jacobian is used (i.e., CVDense or CVLapackDense
is called in Step 8 of §4.4), the user may provide a function of type CVDlsDenseJacFn defined by:

CVDlsDenseJacFn

Definition typedef (*CVDlsDenseJacFn)(long int N, realtype t, N Vector y, N Vector fy,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the dense Jacobian J = ∂f/∂y (or an approximation to it).

Arguments N is the problem size.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).
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Jac is the output dense Jacobian matrix (of type DlsMat).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by a CVDlsDenseJacFn as temporary storage or work space.

Return value A CVDlsDenseJacFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvode will attempt to correct, while cvdense sets last flag

to CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV LSETUP FAIL and cvdense sets last flag

to CVDLS JACFUNC UNRECVR).

Notes A user-supplied dense Jacobian function must load the N by N dense matrix Jac with an
approximation to the Jacobian matrix J(t, y) at the point (t, y). Only nonzero elements
need to be loaded into Jac because Jac is set to the zero matrix before the call to the
Jacobian function. The type of Jac is DlsMat.

The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense
matrix elements without making explicit references to the underlying representation
of the DlsMat type. DENSE ELEM(J, i, j) references the (i, j)-th element of the
dense matrix Jac (i, j = 0 . . . N − 1). This macro is meant for small problems for
which efficiency of access is not a major concern. Thus, in terms of the indices m
and n ranging from 1 to N , the Jacobian element Jm,n can be set using the statement
DENSE ELEM(J, m-1, n-1) = Jm,n. Alternatively, DENSE COL(J, j) returns a pointer
to the first element of the j-th column of Jac (j = 0 . . . N −1), and the elements of the
j-th column can then be accessed using ordinary array indexing. Consequently, Jm,n

can be loaded using the statements col n = DENSE COL(J, n-1); col n[m-1] = Jm,n.
For large problems, it is more efficient to use DENSE COL than to use DENSE ELEM. Note
that both of these macros number rows and columns starting from 0.

The DlsMat type and accessor macros DENSE ELEM and DENSE COL are documented in
§8.1.3.

If the user’s CVDenseJacFn function uses difference quotient approximations, then it
may need to access quantities not in the argument list. These include the current step
size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv mem to user data and then use the CVodeGet* functions described in §4.5.8.1. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

For the sake of uniformity, the argument N is of type long int, even in the case that
the Lapack dense solver is to be used.

4.6.6 Jacobian information (direct method with banded Jacobian)

If the direct linear solver with banded treatment of the Jacobian is used (i.e. CVBand or CVLapackBand
is called in Step 8 of §4.4), the user may provide a function of type CVDlsBandJacFn defined as follows:

CVDlsBandJacFn

Definition typedef int (*CVBandJacFn)(long int N, long int mupper, long int mlower,

realtype t, N Vector y, N Vector fy,

DlsMat Jac, void *user data,

N Vector tmp1, N Vector tmp2, N Vector tmp3);

Purpose This function computes the banded Jacobian J = ∂f/∂y (or a banded approximation
to it).
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Arguments N is the problem size.

mlower

mupper are the lower and upper half-bandwidths of the Jacobian.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

Jac is the output band Jacobian matrix (of type DlsMat).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVDlsBandJacFn as temporary storage or work space.

Return value A CVDlsBandJacFn function should return 0 if successful, a positive value if a recover-
able error occurred (in which case cvode will attempt to correct, while cvband sets
last flag to CVDLS JACFUNC RECVR), or a negative value if it failed unrecoverably (in
which case the integration is halted, CVode returns CV LSETUP FAIL and cvband sets
last flag to CVDLS JACFUNC UNRECVR).

Notes A user-supplied band Jacobian function must load the band matrix Jac of type DlsMat

with the elements of the Jacobian J(t, y) at the point (t,y). Only nonzero elements
need to be loaded into Jac because Jac is initialized to the zero matrix before the call
to the Jacobian function.

The accessor macros BAND ELEM, BAND COL, and BAND COL ELEM allow the user to read
and write band matrix elements without making specific references to the underlying
representation of the DlsMat type. BAND ELEM(J, i, j) references the (i, j)-th element
of the band matrix Jac, counting from 0. This macro is meant for use in small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to N with (m,n) within the band defined by mupper and
mlower, the Jacobian element Jm,n can be loaded using the statement BAND ELEM(J,

m-1, n-1) = Jm,n. The elements within the band are those with -mupper ≤ m-n ≤
mlower. Alternatively, BAND COL(J, j) returns a pointer to the diagonal element of the
j-th column of Jac, and if we assign this address to realtype *col j, then the i-th
element of the j-th column is given by BAND COL ELEM(col j, i, j), counting from 0.
Thus, for (m,n) within the band, Jm,n can be loaded by setting col n = BAND COL(J,

n-1); BAND COL ELEM(col n, m-1, n-1) = Jm,n. The elements of the j-th column can
also be accessed via ordinary array indexing, but this approach requires knowledge of the
underlying storage for a band matrix of type DlsMat. The array col n can be indexed
from −mupper to mlower. For large problems, it is more efficient to use BAND COL and
BAND COL ELEM than to use the BAND ELEM macro. As in the dense case, these macros
all number rows and columns starting from 0.

The DlsMat type and the accessor macros BAND ELEM, BAND COL and BAND COL ELEM are
documented in §8.1.4.

If the user’s CVBandJacFn function uses difference quotient approximations, then it may
need to access quantities not in the argument list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv mem

to user data and then use the CVodeGet* functions described in §4.5.8.1. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

For the sake of uniformity, the arguments N, mlower, and mupper are of type long int,
even in the case that the Lapack band solver is to be used.



66 Using CVODE for C Applications

4.6.7 Jacobian information (direct method with sparse Jacobian)

If the direct linear solver with sparse treatment of the Jacobian is used (i.e., CVKLU or CVSuperLUMT

is called in Step 8 of §4.4), the user must provide a function of type CVSlsSparseJacFn defined by:

CVSlsSparseJacFn

Definition typedef (*CVSlsSparseJacFn)(realtype t, N Vector y, N Vector fy,

SlsMat Jac, void *user data, N Vector tmp1,

N Vector tmp2, N Vector tmp3);

Purpose This function computes the sparse Jacobian J = ∂f/∂y (or an approximation to it).

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

Jac is the output sparse Jacobian matrix (of type SlsMat).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by a CVSlsSparseJacFn as temporary storage or work space.

Return value A CVSlsSparseJacFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case cvode will attempt to correct, while cvklu or cvsuperlumt

sets last flag to CVSLS JACFUNC RECVR), or a negative value if it failed unrecoverably
(in which case the integration is halted, CVode returns CV LSETUP FAIL and cvklu or
cvsuperlumt sets last flag to CVSLS JACFUNC UNRECVR).

Notes A user-supplied sparse Jacobian function must load the compressed-sparse-column ma-
trix Jac with an approximation to the Jacobian matrix J(t, y) at the point (t, y).
Storage for Jac already exists on entry to this function, although the user should ensure
that sufficient space is allocated in Jac to hold the nonzero values to be set; if the exist-
ing space is insufficient the user may reallocate the data and row index arrays as needed.
The type of Jac is SlsMat, and the amount of allocated space is available within the
SlsMat structure as NNZ. The SlsMat type is further documented in the Section §8.2.

If the user’s CVSlsSparseJacFn function uses difference quotient approximations to
set the specific nonzero matrix entries, then it may need to access quantities not in
the argument list. These include the current step size, the error weights, etc. To
obtain these, the user will need to add a pointer to cv mem to user data and then use
the CVodeGet* functions described in §4.5.8.1. The unit roundoff can be accessed as
UNIT ROUNDOFF defined in sundials types.h.

4.6.8 Jacobian information (matrix-vector product)

If one of the Krylov iterative linear solvers spgmr, spbcg, or sptfqmr is selected (CVSp* is called in
step 8 of §4.4), the user may provide a function of type CVSpilsJacTimesVecFn in the following form,
to compute matrix-vector products Jv. If such a function is not supplied, the default is a difference
quotient approximation to these products.

CVSpilsJacTimesVecFn

Definition typedef int (*CVSpilsJacTimesVecFn)(N Vector v, N Vector Jv,

realtype t, N Vector y, N Vector fy,

void *user data, N Vector tmp);
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Purpose This function computes the product Jv = (∂f/∂y)v (or an approximation to it).

Arguments v is the vector by which the Jacobian must be multiplied.

Jv is the output vector computed.

t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.

Return value The value to be returned by the Jacobian-vector product function should be 0 if success-
ful. Any other return value will result in an unrecoverable error of the generic Krylov
solver, in which case the integration is halted.

Notes If the user’s CVSpilsJacTimesVecFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv mem to user data and then use the CVodeGet* functions described in §4.5.8.1. The
unit roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.6.9 Preconditioning (linear system solution)

If preconditioning is used, then the user must provide a C function to solve the linear system Pz = r,
where P may be either a left or right preconditioner matrix. Here P should approximate (at least
crudely) the Newton matrix M = I − γJ , where J = ∂f/∂y. If preconditioning is done on both sides,
the product of the two preconditioner matrices should approximate M . This function must be of type
CVSpilsPrecSolveFn, defined as follows:

CVSpilsPrecSolveFn

Definition typedef int (*CVSpilsPrecSolveFn)(realtype t, N Vector y, N Vector fy,

N Vector r, N Vector z,

realtype gamma, realtype delta,

int lr, void *user data, N Vector tmp);

Purpose This function solves the preconditioned system Pz = r.

Arguments t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(t, y).

r is the right-hand side vector of the linear system.

z is the computed output vector.

gamma is the scalar γ appearing in the Newton matrix given by M = I − γJ .

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r−Pz of the system should
be made less than delta in the weighted l2 norm, i.e.,

√
∑

i(Resi · ewti)2 <
delta. To obtain the N Vector ewt, call CVodeGetErrWeights (see §4.5.8.1).

lr is an input flag indicating whether the preconditioner solve function is to
use the left preconditioner (lr = 1) or the right preconditioner (lr = 2);

user data is a pointer to user data, the same as the user data parameter passed to
the function CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N Vector which can
be used for work space.
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Return value The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

4.6.10 Preconditioning (Jacobian data)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied C function of type CVSpilsPrecSetupFn, defined as follows:

CVSpilsPrecSetupFn

Definition typedef int (*CVSpilsPrecSetupFn)(realtype t, N Vector y, N Vector fy,

booleantype jok, booleantype *jcurPtr,

realtype gamma, void *user data,

N Vector tmp1, N Vector tmp2,

N Vector tmp3);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.

Arguments The arguments of a CVSpilsPrecSetupFn are as follows:

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(t, y).

jok is an input flag indicating whether the Jacobian-related data needs to be
updated. The jok argument provides for the reuse of Jacobian data in
the preconditioner solve function. jok = FALSE means that the Jacobian-
related data must be recomputed from scratch. jok = TRUE means that the
Jacobian data, if saved from the previous call to this function, can be reused
(with the current value of gamma). A call with jok = TRUE can only occur
after a call with jok = FALSE.

jcurPtr is a pointer to a flag which should be set to TRUE if Jacobian data was
recomputed, or set to FALSE if Jacobian data was not recomputed, but
saved data was still reused.

gamma is the scalar γ appearing in the Newton matrix M = I − γJ .

user data is a pointer to user data, the same as the user data parameter passed to
the function CVodeSetUserData.

tmp1

tmp2

tmp3 are pointers to memory allocated for variables of type N Vector which can
be used by CVSpilsPrecSetupFn as temporary storage or work space.

Return value The value to be returned by the preconditioner setup function is a flag indicating
whether it was successful. This value should be 0 if successful, positive for a recov-
erable error (in which case the step will be retried), or negative for an unrecoverable
error (in which case the integration is halted).

Notes The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization of the resulting approximation to M =
I − γJ .

Each call to the preconditioner setup function is preceded by a call to the CVRhsFn user
function with the same (t,y) arguments. Thus, the preconditioner setup function can
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use any auxiliary data that is computed and saved during the evaluation of the ODE
right-hand side.

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the Newton
iteration.

If the user’s CVSpilsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv mem

to user data and then use the CVodeGet* functions described in §4.5.8.1. The unit
roundoff can be accessed as UNIT ROUNDOFF defined in sundials types.h.

4.7 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, cvode provides a banded preconditioner in the module cvbandpre and a
band-block-diagonal preconditioner module cvbbdpre.

4.7.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with any of the Krylov iterative
linear solvers, in a serial setting. It uses difference quotients of the ODE right-hand side function f

to generate a band matrix of bandwidth ml + mu + 1, where the number of super-diagonals (mu, the
upper half-bandwidth) and sub-diagonals (ml, the lower half-bandwidth) are specified by the user,
and uses this to form a preconditioner for use with the Krylov linear solver. Although this matrix
is intended to approximate the Jacobian ∂f/∂y, it may be a very crude approximation. The true
Jacobian need not be banded, or its true bandwidth may be larger than ml + mu + 1, as long as the
banded approximation generated here is sufficiently accurate to speed convergence as a preconditioner.

In order to use the cvbandpre module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §4.3), to use the cvbandpre

module, the main program must include the header file cvode bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §4.4 are grayed out.

1. Set problem dimensions

2. Set vector of initial values

3. Create cvode object

4. Allocate internal memory

5. Set optional inputs

6. Attach iterative linear solver, one of:

(a) flag = CVSpgmr(cvode mem, pretype, maxl);

(b) flag = CVSpbcg(cvode mem, pretype, maxl);

(c) flag = CVSptfqmr(cvode mem, pretype, maxl);

7. Initialize the cvbandpre preconditioner module

Specify the upper and lower half-bandwidths (mu and ml, respectively) and call

flag = CVBandPrecInit(cvode mem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.



70 Using CVODE for C Applications

8. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to CVSpilsSet** optional input functions.

9. Advance solution in time

10. Get optional outputs

Additional optional outputs associated with cvbandpre are available by way of two routines
described below, CVBandPrecGetWorkSpace and CVBandPrecGetNumRhsEvals.

11. Deallocate memory for solution vector

12. Free solver memory

The cvbandpre preconditioner module is initialized and attached by calling the following function:

CVBandPrecInit

Call flag = CVBandPrecInit(cvode mem, N, mu, ml);

Description The function CVBandPrecInit initializes the cvbandpre preconditioner and allocates
required (internal) memory for it.

Arguments cvode mem (void *) pointer to the cvode memory block.

N (long int) problem dimension.

mu (long int) upper half-bandwidth of the Jacobian approximation.

ml (long int) lower half-bandwidth of the Jacobian approximation.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBandPrecInit was successful.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS LMEM NULL A cvspils linear solver memory was not attached.

CVSPILS ILL INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes The banded approximate Jacobian will have nonzero elements only in locations (i, j)
with −ml ≤ j − i ≤ mu.

The following three optional output functions are available for use with the cvbandpre module:

CVBandPrecGetWorkSpace

Call flag = CVBandPrecGetWorkSpace(cvode mem, &lenrwBP, &leniwBP);

Description The function CVBandPrecGetWorkSpace returns the sizes of the cvbandpre real and
integer workspaces.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwBP (long int) the number of realtype values in the cvbandpre workspace.

leniwBP (long int) the number of integer values in the cvbandpre workspace.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional output values have been successfully set.

CVSPILS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes In terms of problem size N and smu = min(N − 1, mu+ml), the actual size of the real
workspace is (2 ml + mu + smu +2)N realtype words, and the actual size of the integer
workspace is N integer words.

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpils***GetWorkSpace.
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CVBandPrecGetNumRhsEvals

Call flag = CVBandPrecGetNumRhsEvals(cvode mem, &nfevalsBP);

Description The function CVBandPrecGetNumRhsEvals returns the number of calls made to the user-
supplied right-hand side function for finite difference banded Jacobian approximation
used within the preconditioner setup function.

Arguments cvode mem (void *) pointer to the cvode memory block.

nfevalsBP (long int) the number of calls to the user right-hand side function.

Return value The return value flag (of type int) is one of:

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS PMEM NULL The cvbandpre preconditioner has not been initialized.

Notes The counter nfevalsBP is distinct from the counter nfevalsLS returned by the cor-
responding function CVSpils***GetNumRhsEvals, and also from nfevals, returned by
CVodeGetNumRhsEvals. The total number of right-hand side function evaluations is the
sum of all three of these counters.

4.7.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as cvode lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (2.4) that must
be solved at each time step. The linear algebraic system is large, sparse and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [20] and is
included in a software module within the cvode package. This module works with the parallel vector
module nvector parallel and is usable with any of the Krylov iterative linear solvers. It generates
a preconditioner that is a block-diagonal matrix with each block being a band matrix. The blocks
need not have the same number of super- and sub-diagonals and these numbers may vary from block
to block. This Band-Block-Diagonal Preconditioner module is called cvbbdpre.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function g(t, y) which approximates
the function f(t, y) in the definition of the ODE system (2.1). However, the user may set g = f .
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks ym, and a decomposition of g into blocks gm. The block gm depends both on ym

and on components of blocks ym′ associated with neighboring subdomains (so-called ghost-cell data).
Let ȳm denote ym augmented with those other components on which gm depends. Then we have

g(t, y) = [g1(t, ȳ1), g2(t, ȳ2), . . . , gM (t, ȳM )]T (4.1)

and each of the blocks gm(t, ȳm) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[P1, P2, . . . , PM ] (4.2)

where
Pm ≈ I − γJm (4.3)

and Jm is a difference quotient approximation to ∂gm/∂ym. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
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and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of gm, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px = b (4.4)

reduces to solving each of the equations

Pmxm = bm (4.5)

and this is done by banded LU factorization of Pm followed by a banded backsolve.
Similar block-diagonal preconditioners could be considered with different treatments of the blocks

Pm. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvbbdpre module calls two user-provided functions to construct P : a required function gloc

(of type CVLocalFn) which approximates the right-hand side function g(t, y) ≈ f(t, y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess
communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function f. Both functions take as input the same pointer user data

that is passed by the user to CVodeSetUserData and that was passed to the user’s function f. The
user is responsible for providing space (presumably within user data) for components of y that are
communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

CVLocalFn

Definition typedef int (*CVLocalFn)(long int Nlocal, realtype t, N Vector y,

N Vector glocal, void *user data);

Purpose This gloc function computes g(t, y). It loads the vector glocal as a function of t and
y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.

glocal is the output vector.

user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvode will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes This function must assume that all interprocess communication of data needed to cal-
culate glocal has already been done, and that this data is accessible within user data.

The case where g is mathematically identical to f is allowed.

CVCommFn

Definition typedef int (*CVCommFn)(long int Nlocal, realtype t,

N Vector y, void *user data);

Purpose This cfn function performs all interprocess communication necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.

t is the value of the independent variable.

y is the dependent variable.
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user data is a pointer to user data, the same as the user data parameter passed to
CVodeSetUserData.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case cvode will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV LSETUP FAIL).

Notes The cfn function is expected to save communicated data in space defined within the
data structure user data.

Each call to the cfn function is preceded by a call to the right-hand side function f

with the same (t, y) arguments. Thus, cfn can omit any communication done by f

if relevant to the evaluation of glocal. If all necessary communication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecInit (see below).

Besides the header files required for the integration of the ODE problem (see §4.3), to use the
cvbbdpre module, the main program must include the header file cvode bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from
the skeleton program presented in §4.4 are grayed out.

1. Initialize MPI

2. Set problem dimensions

3. Set vector of initial values

4. Create cvode object

5. Allocate internal memory

6. Set optional inputs

7. Attach iterative linear solver, one of:

(a) flag = CVSpgmr(cvode mem, pretype, maxl);

(b) flag = CVSpbcg(cvode mem, pretype, maxl);

(c) flag = CVSptfqmr(cvode mem, pretype, maxl);

8. Initialize the cvbbdpre preconditioner module

Specify the upper and lower half-bandwidths mudq and mldq, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
CVBBDPrecInit are the two user-supplied functions described above.

9. Set linear solver optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to cvspils optional input functions.

10. Advance solution in time

11. Get optional outputs

Additional optional outputs associated with cvbbdpre are available by way of two routines de-
scribed below, CVBBDPrecGetWorkSpace and CVBBDPrecGetNumGfnEvals.

12. Deallocate memory for solution vector
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13. Free solver memory

14. Finalize MPI

The user-callable functions that initialize (step 8 above) or re-initialize the cvbbdpre preconditioner
module are described next.

CVBBDPrecInit

Call flag = CVBBDPrecInit(cvode mem, local N, mudq, mldq,

mukeep, mlkeep, dqrely, gloc, cfn);

Description The function CVBBDPrecInit initializes and allocates (internal) memory for the cvbb-

dpre preconditioner.

Arguments cvode mem (void *) pointer to the cvode memory block.

local N (long int) local vector length.

mudq (long int) upper half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mukeep (long int) upper half-bandwidth of the retained banded approximate Ja-
cobian block.

mlkeep (long int) lower half-bandwidth of the retained banded approximate Jaco-
bian block.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely=

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t, y) ≈
f(t, y).

cfn (CVCommFn) the optional C function which performs all interprocess commu-
nication required for the computation of g(t, y).

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBBDPrecInit was successful.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS MEM FAIL A memory allocation request has failed.

CVSPILS LMEM NULL A cvspils linear solver was not attached.

CVSPILS ILL INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N−1, it is
replaced by 0 or local N−1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.

The cvbbdpre module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize cvode

for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and mldq used in the difference-quotient Jacobian approximations, the relative
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increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to CVSpgmr, CVSpbcg, or CVSptfqmr, and/or one or more
of the corresponding CVSpils***Set*** functions, must also be made (in the proper order).

CVBBDPrecReInit

Call flag = CVBBDPrecReInit(cvode mem, mudq, mldq, dqrely);

Description The function CVBBDPrecReInit re-initializes the cvbbdpre preconditioner.

Arguments cvode mem (void *) pointer to the cvode memory block.

mudq (long int) upper half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

mldq (long int) lower half-bandwidth to be used in the difference quotient Ja-
cobian approximation.

dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely =

√
unit roundoff, which

can be specified by passing dqrely = 0.0.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The call to CVBBDPrecReInit was successful.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS LMEM NULL A cvspils linear solver memory was not attached.

CVSPILS PMEM NULL The function CVBBDPrecInit was not previously called.

Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value local N−1,
it is replaced by 0 or local N−1 accordingly.

The following two optional output functions are available for use with the cvbbdpre module:

CVBBDPrecGetWorkSpace

Call flag = CVBBDPrecGetWorkSpace(cvode mem, &lenrwBBDP, &leniwBBDP);

Description The function CVBBDPrecGetWorkSpace returns the local cvbbdpre real and integer
workspace sizes.

Arguments cvode mem (void *) pointer to the cvode memory block.

lenrwBBDP (long int) local number of realtype values in the cvbbdpre workspace.

leniwBBDP (long int) local number of integer values in the cvbbdpre workspace.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS PMEM NULL The cvbbdpre preconditioner has not been initialized.

Notes In terms of local N and smu = min(local N - 1, mukeep + mlkeep), the actual size
of the real workspace is (2 mlkeep + mukeep + smu +2) local N realtype words, and
the actual size of the integer workspace is local N integer words. These values are local
to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function CVSpils***GetWorkSpace.

CVBBDPrecGetNumGfnEvals

Call flag = CVBBDPrecGetNumGfnEvals(cvode mem, &ngevalsBBDP);

Description The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.



76 Using CVODE for C Applications

Arguments cvode mem (void *) pointer to the cvode memory block.

ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.

Return value The return value flag (of type int) is one of

CVSPILS SUCCESS The optional output value has been successfully set.

CVSPILS MEM NULL The cvode mem pointer was NULL.

CVSPILS PMEM NULL The cvbbdpre preconditioner has not been initialized.

In addition to the ngevalsBBDP gloc evaluations, the costs associated with cvbbdpre also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional cvode output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.8).



Chapter 5

FCVODE, an Interface Module for
FORTRAN Applications

The fcvode interface module is a package of C functions which support the use of the cvode solver,
for the solution of ODE systems dy/dt = f(t, y), in a mixed Fortran/C setting. While cvode is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran. This package provides the necessary interface to cvode for all
supplied serial and parallel nvector implementations.

5.1 Important note on portability

In this package, the names of the interface functions, and the names of the Fortran user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77 FUNC

defined in the header file sundials config.h. The mapping defined by F77 FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the Fortran language,
Fortran compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the Fortran subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction , MYFUNCTION , and so on, depending on the Fortran compiler used.

sundials determines this name-mangling scheme at configuration time (see Appendix A).

5.2 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A Fortran user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this Fortran/C
interface are declared of the appropriate type.

Integers: sundials uses both int and long int types:

• int – equivalent to an INTEGER or INTEGER*4 in Fortran

• long int – this will depend on the computer architecture:

– 32-bit architecture – equivalent to an INTEGER or INTEGER*4 in Fortran

– 64-bit architecture – equivalent to an INTEGER*8 in Fortran



78 FCVODE, an Interface Module for FORTRAN Applications

Real numbers: As discussed in Appendix A, at compilation sundials allows the configuration
option --with-precision, that accepts values of single, double or extended (the default is double).
This choice dictates the size of a realtype variable. The corresponding Fortran types for these
realtype sizes are:

• single – equivalent to a REAL or REAL*4 in Fortran

• double – equivalent to a DOUBLE PRECISION or REAL*8 in Fortran

• extended – equivalent to a REAL*16 in Fortran

5.3 FCVODE routines

The user-callable functions, with the corresponding cvode functions, are as follows:

• Interface to the nvector modules

– FNVINITS (defined by nvector serial) interfaces to N VNewEmpty Serial.

– FNVINITOMP (defined by nvector openmp) interfaces to N VNewEmpty OpenMP.

– FNVINITPTS (defined by nvector pthreads) interfaces to N VNewEmpty Pthreads.

– FNVINITP (defined by nvector parallel) interfaces to N VNewEmpty Parallel.

• Interface to the main cvode module

– FCVMALLOC interfaces to CVodeCreate, CVodeSetUserData, and CVodeInit, as well as one
of CVodeSStolerances or CVodeSVtolerances.

– FCVREINIT interfaces to CVodeReInit.

– FCVSETIIN and FCVSETRIN interface to CVodeSet* functions.

– FCVEWTSET interfaces to CVodeWFtolerances.

– FCVODE interfaces to CVode, CVodeGet* functions, and to the optional output functions for
the selected linear solver module.

– FCVDKY interfaces to the interpolated output function CVodeGetDky.

– FCVGETERRWEIGHTS interfaces to CVodeGetErrWeights.

– FCVGETESTLOCALERR interfaces to CVodeGetEstLocalErrors.

– FCVFREE interfaces to CVodeFree.

• Interface to the linear solver modules

– FCVDIAG interfaces to CVDiag.

– FCVDENSE interfaces to CVDense.

– FCVDENSESETJAC interfaces to CVDlsSetDenseJacFn.

– FCVLAPACKDENSE interfaces to CVLapackDense.

– FCVLAPACKDENSESETJAC interfaces to CVDlsSetDenseJacFn.

– FCVBAND interfaces to CVBand.

– FCVBANDSETJAC interfaces to CVDlsSetBandJacFn.

– FCVLAPACKBAND interfaces to CVLapackBand.

– FCVLAPACKBANDSETJAC interfaces to CVDlsSetBandJacFn.

– FCVKLU interfaces to CVKLU.

– FCVKLUREINIT interfaces to CVKLUReInit.

– FCVSUPERLUMT interfaces to CVSuperLUMT.
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– FCVSPGMR interfaces to CVSpgmr and spgmr optional input functions.

– FCVSPGMRREINIT interfaces to spgmr optional input functions.

– FCVSPBCG interfaces to CVSpbcg and spbcg optional input functions.

– FCVSPBCGREINIT interfaces to spbcg optional input functions.

– FCVSPTFQMR interfaces to CVSptfqmr and sptfqmr optional input functions.

– FCVSPTFQMRREINIT interfaces to sptfqmr optional input functions.

– FCVSPILSSETJAC interfaces to CVSpilsSetJacTimesVecFn.

– FCVSPILSSETPREC interfaces to CVSpilsSetPreconditioner.

The user-supplied functions, each listed with the corresponding internal interface function which
calls it (and its type within cvode), are as follows:

fcvode routine cvode function cvode type of
(Fortran, user-supplied) (C, interface) interface function

FCVFUN FCVf CVRhsFn

FCVEWT FCVEwtSet CVEwtFn

FCVDJAC FCVDenseJac CVDlsDenseJacFn

FCVLapackDenseJac CVDlsDenseJacFn

FCVBJAC FCVBandJac CVDlsBandJacFn

FCVLapackBandJac CVDlsBandJacFn

FCVSPJAC FCVSparseJac CVSlsSparseJacFn

FCVPSOL FCVPSol CVSpilsPrecSolveFn

FCVPSET FCVPSet CVSpilsPrecSetupFn

FCVJTIMES FCVJtimes CVSpilsJacTimesVecFn

In contrast to the case of direct use of cvode, and of most Fortran ODE solvers, the names of all
user-supplied routines here are fixed, in order to maximize portability for the resulting mixed-language
program.

5.4 Usage of the FCVODE interface module

The usage of fcvode requires calls to six or seven interface functions, depending on the method
options selected, and one or more user-supplied routines which define the problem to be solved. These
function calls and user routines are summarized separately below. Some details are omitted, and
the user is referred to the description of the corresponding cvode functions for information on the
arguments of any given user-callable interface routine, or of a given user-supplied function called by an
interface function. The usage of fcvode for rootfinding and with preconditioner modules is described
in later subsections.

In the instructions below, steps marked [S] apply to the nvector module nvector serial, steps
marked [O] apply to nvector openmp, steps marked [T] apply to nvector pthreads, while steps
marked [P] apply to nvector parallel,

1. Right-hand side specification

The user must, in all cases, supply the following Fortran routine

SUBROUTINE FCVFUN(T, Y, YDOT, IPAR, RPAR, IER)

DIMENSION Y(*), YDOT(*), IPAR(*), RPAR(*)

It must set the YDOT array to f(t, y), the right-hand side of the ODE system, as function of T= t
and the array Y= y. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FCVMALLOC. IER is an error return flag which should be set to 0 if
successful, a positive value if a recoverable error occurred (in which case cvode will attempt to
correct), or a negative value if it failed unrecoverably (in which case the integration is halted).
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2. nvector module initialization

[S] To initialize the serial nvector module, the user must make the following call:

CALL FNVINITS(KEY, NEQ, IER)

where KEY is the solver id (KEY = 1 for cvode), NEQ is the size of vectors, and IER is a return
completion flag which is 0 on success and −1 if a failure occurred.

[O] To initialize the nvector openmp nvector module, the user must make the following call:

CALL FNVINITOMP(KEY, NEQ, NUMTHREADS, IER)

where KEY is the solver id (KEY = 1 for cvode), NEQ is the size of vectors, NUMTHREADS is the
number of threads, and IER is a return completion flag which is 0 on success and −1 if a failure
occurred.

[T] To initialize the nvector pthreads nvector module, the user must make the following
call:

CALL FNVINITPTS(KEY, NEQ, NUMTHREADS, IER)

where KEY is the solver id (KEY = 1 for cvode), NEQ is the size of vectors, NUMTHREADS is the
number of threads, and IER is a return completion flag which is 0 on success and −1 if a failure
occurred.

[P] To initialize the MPI-based distributed memory parallel vector module, the user must make
the following call:

CALL FNVINITP(COMM, KEY, NLOCAL, NGLOBAL, IER)

in which the arguments are: COMM = MPI communicator, KEY = 1 for cvode, NLOCAL = the local
size of vectors on this processor, and NGLOBAL = the system size (and the global size of all vectors,
equal to the sum of all values of NLOCAL). The return flag IER is set to 0 on a successful return
and to −1 otherwise.

NOTE: The integers NEQ, NLOCAL, and NGLOBAL should be declared so as to match C type long

int.

If the header file sundials config.h defines SUNDIALS MPI COMM F2C to be 1 (meaning the MPI!

implementation used to build sundials includes the MPI Comm f2c function), then COMM can be
any valid MPI communicator. Otherwise, MPI COMM WORLD will be used, so just pass an integer
value as a placeholder.

3. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FCVMALLOC

Call CALL FCVMALLOC(T0, Y0, METH, ITMETH, IATOL, RTOL, ATOL,

& IOUT, ROUT, IPAR, RPAR, IER)

Description This function provides required problem and solution specifications, specifies op-
tional inputs, allocates internal memory, and initializes cvode.

Arguments T0 is the initial value of t.
Y0 is an array of initial conditions.
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METH specifies the basic integration method: 1 for Adams (nonstiff) or 2 for BDF
(stiff).

ITMETH specifies the nonlinear iteration method: 1 for functional iteration or 2 for
Newton iteration.

IATOL specifies the type for absolute tolerance ATOL: 1 for scalar or 2 for array.
If IATOL= 3, the arguments RTOL and ATOL are ignored and the user is
expected to subsequently call FCVEWTSET and provide the function FCVEWT.

RTOL is the relative tolerance (scalar).
ATOL is the absolute tolerance (scalar or array).
IOUT is an integer array of length 21 for integer optional outputs.
ROUT is a real array of length 6 for real optional outputs.
IPAR is an integer array of user data which will be passed unmodified to all

user-provided routines.
RPAR is a real array of user data which will be passed unmodified to all user-

provided routines.

Return value IER is a return completion flag. Values are 0 for successful return and −1 otherwise.
See printed message for details in case of failure.

Notes The user integer data arrays IOUT and IPAR must be declared as INTEGER*4 or
INTEGER*8 according to the C type long int.

Modifications to the user data arrays IPAR and RPAR inside a user-provided routine
will be propagated to all subsequent calls to such routines.

The optional outputs associated with the main cvode integrator are listed in Ta-
ble 5.2.

As an alternative to providing tolerances in the call to FCVMALLOC, the user may provide a routine
to compute the error weights used in the WRMS norm evaluations. If supplied, it must have the
following form:

SUBROUTINE FCVEWT (Y, EWT, IPAR, RPAR, IER)

DIMENSION Y(*), EWT(*), IPAR(*), RPAR(*)

It must set the positive components of the error weight vector EWT for the calculation of the
WRMS norm of Y. On return, set IER = 0 if FCVEWT was successful, and nonzero otherwise. The
arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those passed
to FCVMALLOC.

If the FCVEWT routine is provided, then, following the call to FCVMALOC, the user must make the
call:

CALL FCVEWTSET (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied error weight routine. The argument IER is an
error return flag which is 0 for success or non-zero if an error occurred.

4. Set optional inputs

Call FCVINSETIIN and/or FCVINSETRIN to set desired optional inputs, if any. See §5.5 for details.

5. Linear solver specification

In the case of a stiff system, the implicit BDF method involves the solution of linear systems related
to the Jacobian J = ∂f/∂y of the ODE system. The user of fcvode must call a routine with a
specific name to make the desired choice of linear solver.

[S], [P] Diagonal approximate Jacobian

This choice is appropriate when the Jacobian can be well approximated by a diagonal matrix.
The user must make the call:
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CALL FCVDIAG(IER)

IER is an error return flag set on 0 on success or −1 if a memory failure occurred. There is no
additional user-supplied routine. Optional outputs specific to the diag case listed in Table 5.2.

[S] Dense treatment of the linear system

To use the direct dense linear solver based on the internal cvode implementation, the user must
make the call:

CALL FCVDENSE(NEQ, IER)

where NEQ is the size of the ODE system. The argument IER is an error return flag which is 0 for
success , −1 if a memory allocation failure occurred, or −2 for illegal input.

Alternatively, to use the Lapack-based direct dense linear solver, the user must make the call:

CALL FCVLAPACKDENSE(NEQ, IER)

where the arguments have the same meanings as for FCVDENSE, except that here NEQ must be
declared so as to match C type int.

As an option when using the dense linear solver, the user may supply a routine that computes a
dense approximation of the system Jacobian J = ∂f/∂y. If supplied, it must have the following
form:

SUBROUTINE FCVDJAC (NEQ, T, Y, FY, DJAC, H, IPAR, RPAR,

& WK1, WK2, WK3, IER)

DIMENSION Y(*), FY(*), DJAC(NEQ,*), IPAR(*), RPAR(*),

& WK1(*), WK2(*), WK3(*)

Typically this routine will use only NEQ, T, Y, and DJAC. It must compute the Jacobian and store
it columnwise in DJAC. The input arguments T, Y, and FY contain the current values of t, y, and
f(t, y), respectively. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FCVMALLOC. The vectors WK1, WK2, and WK3 of length NEQ are provided
as work space for use in FCVDJAC. IER is an error return flag which should be set to 0 if successful,
a positive value if a recoverable error occurred (in which case cvode will attempt to correct), or
a negative value if FCVDJAC failed unrecoverably (in which case the integration is halted). NOTE:
The argument NEQ has a type consistent with C type long int even in the case when the Lapack
dense solver is to be used.

If the user’s FCVDJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. The array EWT can be
obtained by calling FCVGETERRWEIGHTS using one of the work arrays as temporary storage for EWT.
It may also need the unit roundoff, which can be obtained as the optional output ROUT(6), passed
from the calling program to this routine using either RPAR or a common block.

If the FCVDJAC routine is provided, then, following the call to FCVDENSE, the user must make the
call:

CALL FCVDENSESETJAC (FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is an
error return flag which is 0 for success or non-zero if an error occurred. If using the Lapack-based
direct dense linear solver, the use of a Jacobian approximation supplied by the user is indicated
through the call

CALL FCVLAPACKDENSESETJAC (FLAG, IER)
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Optional outputs specific to the dense case are listed in Table 5.2.

[S] Band treatment of the linear system

To use the direct band linear solver based on the internal cvode implementation, the user must
make the call:

CALL FCVBAND (NEQ, MU, ML, IER)

The arguments are: MU, the upper half-bandwidth; ML, the lower half-bandwidth; and IER an error
return flag which is 0 for success , −1 if a memory allocation failure occurred, or −2 in case an
input has an illegal value.

Alternatively, to use the Lapack-based direct band linear solver, the user must make the call:

CALL FCVLAPACKBAND(NEQ, MU, ML, IER)

where the arguments have the same meanings as for FCVBAND, except that here NEQ, MU, and ML

must be declared so as to match C type int.

As an option when using the band linear solver, the user may supply a routine that computes a
band approximation of the system Jacobian J = ∂f/∂y. If supplied, it must have the following
form:

SUBROUTINE FCVBJAC(NEQ, MU, ML, MDIM, T, Y, FY, BJAC, H, IPAR, RPAR,

& WK1, WK2, WK3, IER)

DIMENSION Y(*), FY(*), BJAC(MDIM,*), IPAR(*), RPAR(*),

& WK1(*), WK2(*), WK3(*)

Typically this routine will use only NEQ, MU, ML, T, Y, and BJAC. It must load the MDIM by N

array BJAC with the Jacobian matrix at the current (t,y) in band form. Store in BJAC(k, j) the
Jacobian element Ji,j with k = i − j+ MU +1 (k = 1 · · · ML + MU + 1) and j = 1 · · ·N . The
input arguments T, Y, and FY contain the current values of t, y, and f(t, y), respectively. The
arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those passed
to FCVMALLOC. The vectors WK1, WK2, and WK3 of length NEQ are provided as work space for use
in FCVBJAC. IER is an error return flag which should be set to 0 if successful, a positive value if
a recoverable error occurred (in which case cvode will attempt to correct), or a negative value
if FCVBJAC failed unrecoverably (in which case the integration is halted). NOTE: The arguments
NEQ, MU, ML, and MDIM have a type consistent with C type long int even in the case when the
Lapack band solver is to be used.

If the user’s FCVBJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. The array EWT can be
obtained by calling FCVGETERRWEIGHTS using one of the work arrays as temporary storage for EWT.
It may also need the unit roundoff, which can be obtained as the optional output ROUT(6), passed
from the calling program to this routine using either RPAR or a common block.

If the FCVBJAC routine is provided, then, following the call to FCVBAND, the user must make the
call:

CALL FCVBANDSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian approximation. The argument IER is an
error return flag which is 0 for success or non-zero if an error occurred. If using the Lapack-based
direct band linear solver, the use of a Jacobian approximation supplied by the user is indicated
through the call

CALL FCVLAPACKNBANDSETJAC (FLAG, IER)
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Optional outputs specific to the band case are listed in Table 5.2.

[S] Sparse direct treatment of the linear system

To use the KLU sparse direct linear solver, the user must make the call:

CALL FCVKLU (NEQ, NNZ, ORDERING, IER)

where NEQ is the size of the ODE system, NNZ is the maximum number of nonzeros in the Jacobian
matrix, and ORDERING is the matrix ordering desired with possible values from the KLU package
(0 = AMD, 1 = COLAMD). The argument IER is an error return flag which is 0 for success or
negative for an error.

The cvode KLU solver will reuse much of the factorization information from one nonlinear iter-
ation and time step to the next. If at any time the user wants to force a full refactorization, or if
the number of nonzeros in the Jacobian matrix changes, the user should make the call

CALL FCVKLUREINIT(NEQ, NNZ, REINIT_TYPE)

where NEQ is the size of the ODE system, NNZ is the maximum number of nonzeros in the Jacobian
matrix, and REINIT TYPE is 1 or 2. For a value of 1, the matrix will be destroyed and a new one
will be allocated with NNZ nonzeros. For a value of 2, only symbolic and numeric factorizations
will be completed.

Alternatively, to use the SuperLUMT linear solver, the user must make the call:

CALL FCVSUPERLUMT (NEQ, NNZ, ORDERING, IER)

where the arguments have the same meanings as for FCVKLU, except that here possible values for
ORDERING derive from the superlumt package and include: 0 for Natural ordering, 1 for Minimum
degree on AT A, 2 for Minimum degree on AT + A, and 3 for COLAMD.

If the either of the sparse direct interface packages are used, then the user must supply the
FCVSPJAC routine that computes a compressed-sparse-column approximation of the system Jaco-
bian J = ∂f/∂y. If supplied, it must have the following form:

SUBROUTINE FCVSPJAC(T, Y, FY, N, NNZ, JDATA, JRVALS,

& JCPTRS, H, IPAR, RPAR, WK1, WK2, WK3, IER)

It must load the N by N compressed sparse column matrix with storage for NNZ nonzeros, stored in
the arrays JDATA (nonzero values), JRVALS (row indices for each nonzero), JCOLPTRS (indices
for start of each column), with the Jacobian matrix at the current (t, y) in CSC form (see
sundials sparse.h for more information). The arguments are T, the current time; Y, an ar-
ray containing state variables; FY, an array containing state derivatives; N, the number of matrix
rows/columns in the Jacobian; NNZ, allocated length of nonzero storage; JDATA, nonzero values in
the Jacobian (of length NNZ); JRVALS, row indices for each nonzero in Jacobian (of length NNZ);
JCPTRS, pointers to each Jacobian column in the two preceding arrays (of length N+1); H, the
current step size; IPAR, an array containing integer user data that was passed to FCVMALLOC;
RPAR, an array containing real user data that was passed to FCVMALLOC; WK*, work arrays contain-
ing temporary workspace of same size as Y; and IER, error return code (0 if successful, > 0 if a
recoverable error occurred, or < 0 if an unrecoverable error occurred.)

Optional outputs specific to the sparse case are listed in Table 5.2.

[S][P] SPGMR treatment of the linear systems

For the Scaled Preconditioned GMRES solution of the linear systems, the user must make the call
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CALL FCVSPGMR(IPRETYPE, IGSTYPE, MAXL, DELT, IER)

The arguments are as follows. IPRETYPE specifies the preconditioner type: 0 for no precondition-
ing, 1 for left only, 2 for right only, or 3 for both sides. IGSTYPE indicates the Gram-Schmidt
process type: 1 for modified G-S or 2 for classical G-S. MAXL is the maximum Krylov subspace
dimension. DELT is the linear convergence tolerance factor. For all of the input arguments, a value
of 0 or 0.0 indicates the default. IER is an error return flag which is 0 to indicate success, −1 if a
memory allocation failure occurred, or −2 to indicate an illegal input.

Optional outputs specific to the spgmr case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPBCG/SPTFQMR below.

[S][P] SPBCG treatment of the linear systems

For the Scaled Preconditioned Bi-CGStab solution of the linear systems, the user must make the
call

CALL FCVSPBCG(IPRETYPE, MAXL, DELT, IER)

Its arguments are the same as those with the same names for FCVSPGMR.

Optional outputs specific to the spbcg case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see User-supplied routines for
SPGMR/SPBCG/SPTFQMR below.

[S][P] SPTFQMR treatment of the linear systems

For the Scaled Preconditioned Transpose-Free Quasi-Minimal Residual solution of the linear sys-
tems, the user must make the call

CALL FCVSPTFQMR(IPRETYPE, MAXL, DELT, IER)

Its arguments are the same as those with the same names for FCVSPGMR.

Optional outputs specific to the sptfqmr case are listed in Table 5.2.

For descriptions of the relevant optional user-supplied routines, see below.

[S][P] Functions used by SPGMR/SPBCG/SPTFQMR

An optional user-supplied routine, FCVJTIMES (see below), can be provided for Jacobian-vector
products. If it is, then, following the call to FCVSPGMR, FCVSPBCG, or FCVSPTFQMR, the user must
make the call:

CALL FCVSPILSSETJAC(FLAG, IER)

with FLAG 6= 0 to specify use of the user-supplied Jacobian-times-vector approximation. The
argument IER is an error return flag which is 0 for success or non-zero if an error occurred.

If preconditioning is to be done (IPRETYPE 6= 0), then the user must call

CALL FCVSPILSSETPREC(FLAG, IER)

with FLAG 6= 0. The return flag IER is 0 if successful, or negative if a memory error occurred.
In addition, the user program must include preconditioner routines FCVPSOL and FCVPSET (see
below).

[S][P] User-supplied routines for SPGMR/SPBCG/SPTFQMR
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With treatment of the linear systems by any of the Krylov iterative solvers, there are three optional
user-supplied routines — FCVJTIMES, FCVPSOL, and FCVPSET. The specifications for these routines
are given below.

As an option when using the spgmr, spbcg, or sptfqmr linear solvers, the user may supply a
routine that computes the product of the system Jacobian J = ∂f/∂y and a given vector v. If
supplied, it must have the following form:

SUBROUTINE FCVJTIMES (V, FJV, T, Y, FY, H, IPAR, RPAR, WORK, IER)

DIMENSION V(*), FJV(*), Y(*), FY(*), IPAR(*), RPAR(*), WORK(*)

Typically this routine will use only NEQ, T, Y, V, and FJV. It must compute the product vector Jv,
where the vector v is stored in V, and store the product in FJV. The input arguments T, Y, and FY

contain the current values of t, y, and f(t, y), respectively. On return, set IER = 0 if FCVJTIMES
was successful, and nonzero otherwise. The arrays IPAR (of integers) and RPAR (of reals) contain
user data and are the same as those passed to FCVMALLOC. The vector WORK, of length NEQ, is
provided as work space for use in FCVJTIMES.

If preconditioning is to be included, the following routine must be supplied, for solution of the
preconditioner linear system:

SUBROUTINE FCVPSOL(T, Y, FY, R, Z, GAMMA, DELTA, LR, IPAR, RPAR,

& WORK, IER)

DIMENSION Y(*), FY(*), R(*), Z(*), IPAR(*), RPAR(*), WORK(*)

It must solve the preconditioner linear system Pz = r, where r = R is input, and store the
solution z in Z. Here P is the left preconditioner if LR=1 and the right preconditioner if LR=2.
The preconditioner (or the product of the left and right preconditioners if both are nontrivial)
should be an approximation to the matrix I − γJ , where I is the identity matrix, J is the system
Jacobian, and γ = GAMMA. The input arguments T, Y, and FY contain the current values of t, y,
and f(t, y), respectively. On return, set IER = 0 if FCVPSOL was successful, set IER positive if a
recoverable error occurred, and set IER negative if a non-recoverable error occurred.

The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC. The argument WORK is a work array of length NEQ for use by this routine.

If the user’s preconditioner requires that any Jacobian related data be evaluated or preprocessed,
then the following routine can be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FCVPSET(T, Y, FY, JOK, JCUR, GAMMA, H, IPAR, RPAR,

& WORK1, WORK2, WORK3, IER)

DIMENSION Y(*), FY(*), EWT(*), IPAR(*), RPAR(*),

& WORK1(*), WORK2(*), WORK3(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioner linear systems by FCVPSOL. The input argument JOK allows for Jacobian data
to be saved and reused: If JOK = 0, this data should be recomputed from scratch. If JOK = 1, a
saved copy of it may be reused, and the preconditioner constructed from it. The input arguments
T, Y, and FY contain the current values of t, y, and f(t, y), respectively. On return, set JCUR =

1 if Jacobian data was computed, and set JCUR = 0 otherwise. Also on return, set IER = 0 if
FCVPSET was successful, set IER positive if a recoverable error occurred, and set IER negative if a
non-recoverable error occurred.

The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC. The arguments WORK1, WORK2, WORK3 are work arrays of length NEQ for use
by this routine.
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If the user calls FCVSPILSSETPREC, the routine FCVPSET must be provided, even if it is not needed,!

and it must return IER=0.

Notes

(a) If the user’s FCVJTIMES or FCVPSET routine uses difference quotient approximations, it may
need to use the error weight array EWT, the current stepsize H, and/or the unit roundoff, in the
calculation of suitable increments. Also, If FCVPSOL uses an iterative method in its solution,
the residual vector ρ = r − Pz of the system should be made less than DELTA in weighted ℓ2
norm, i.e.

√

∑

(ρi ∗ EWT[i])2 < DELTA.

(b) If needed in FCVJTIMES, FCVPSOL, or FCVPSET, the error weight array EWT can be obtained
by calling FCVGETERRWEIGHTS using one of the work arrays as temporary storage for EWT.

(c) If needed in FCVJTIMES, FCVPSOL, or FCVPSET, the unit roundoff can be obtained as the
optional output ROUT(6) (available after the call to FCVMALLOC) and can be passed using
either the RPAR user data array or a common block.

6. Problem solution

Carrying out the integration is accomplished by making calls as follows:

CALL FCVODE(TOUT, T, Y, ITASK, IER)

The arguments are as follows. TOUT specifies the next value of t at which a solution is desired
(input). T is the value of t reached by the solver on output. Y is an array containing the computed
solution on output. ITASK is a task indicator and should be set to 1 for normal mode (overshoot
TOUT and interpolate), or to 2 for one-step mode (return after each internal step taken). IER is a
completion flag and will be set to a positive value upon successful return or to a negative value
if an error occurred. These values correspond to the CVode returns (see §4.5.5 and §B.2). The
current values of the optional outputs are available in IOUT and ROUT (see Table 5.2).

7. Additional solution output

After a successful return from FCVODE, the routine FCVDKY may be used to obtain a derivative of
the solution, of order up to the current method order, at any t within the last step taken. For
this, make the following call:

CALL FCVDKY(T, K, DKY, IER)

where T is the value of t at which solution derivative is desired, and K is the derivative order (0 ≤
K ≤ QU). On return, DKY is an array containing the computed K-th derivative of y. The value T

must lie between TCUR - HU and TCUR. The return flag IER is set to 0 upon successful return or
to a negative value to indicate an illegal input.

8. Problem reinitialization

To re-initialize the cvode solver for the solution of a new problem of the same size as one already
solved, make the following call:

CALL FCVREINIT(T0, Y0, IATOL, RTOL, ATOL, IER)

The arguments have the same names and meanings as those of FCVMALLOC. FCVREINIT performs
the same initializations as FCVMALLOC, but does no memory allocation, using instead the existing
internal memory created by the previous FCVMALLOC call. The call to specify the linear system
solution method may or may not be needed.

Following this call, a call to specify the linear system solver must be made if the choice of linear
solver is being changed. Otherwise, a call to reinitialize the linear solver last used may or may
not be needed, depending on changes in the inputs to it.
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In the case of the band solver, for any change in the half-bandwidth parameters, call FCVBAND (or
FCVLAPACKBAND) as described above.

In the case of spgmr, for a change of inputs other than MAXL, make the call

CALL FCVSPGMRREINIT (IPRETYPE, IGSTYPE, DELT, IER)

which reinitializes spgmr without reallocating its memory. The arguments have the same names
and meanings as those of FCVSPGMR. If MAXL is being changed, then call FCVSPGMR instead.

In the case of spbcg, for a change in any inputs, make the call

CALL FCVSPBCGREINIT (IPRETYPE, MAXL, DELT, IER)

which reinitializes spbcg without reallocating its memory. The arguments have the same names
and meanings as those of FCVSPBCG.

In the case of sptfqmr, for a change in any inputs, make the call

CALL FCVSPTFQMRREINIT (IPRETYPE, MAXL, DELT, IER)

which reinitializes sptfqmr without reallocating its memory. The arguments have the same names
and meanings as those of FCVSPTFQMR.

9. Memory deallocation

To free the internal memory created by the call to FCVMALLOC, make the call

CALL FCVFREE

5.5 FCVODE optional input and output

In order to keep the number of user-callable fcvode interface routines to a minimum, optional inputs
to the cvode solver are passed through only two routines: FCVSETIIN for integer optional inputs and
FCVSETRIN for real optional inputs. These functions should be called as follows:

CALL FCVSETIIN(KEY, IVAL, IER)

CALL FCVSETRIN(KEY, RVAL, IER)

where KEY is a quoted string indicating which optoinal input is set (see Table 5.1), IVAL is the integer
input value to be used, RVAL is the real input value to be used, and IER is an integer return flag which
is set to 0 on success and a negative value if a failure occurred. The integer IVAL should be declared
in a manner consistent with C type long int.

The optional outputs from the cvode solver are accessed not through individual functions, but
rather through a pair of arrays, IOUT (integer type) of dimension at least 21, and ROUT (real type) of
dimension at least 6. These arrays are owned (and allocated) by the user and are passed as arguments
to FCVMALLOC. Table 5.2 lists the entries in these two arrays and specifies the optional variable as well
as the cvode function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.6 and §4.5.8.
In addition to the optional inputs communicated through FCVSET* calls and the optional outputs

extracted from IOUT and ROUT, the following user-callable routines are available:
To obtain the error weight array EWT, containing the multiplicative error weights used the WRMS

norms, make the following call:

CALL FCVGETERRWEIGHTS (EWT, IER)



5.6 Usage of the FCVROOT interface to rootfinding 89

Table 5.1: Keys for setting fcvode optional inputs

Integer optional inputs (FCVSETIIN)
Key Optional input Default value

MAX ORD Maximum LMM method order 5 (BDF), 12 (Adams)
MAX NSTEPS Maximum no. of internal steps before tout 500
MAX ERRFAIL Maximum no. of error test failures 7
MAX NITERS Maximum no. of nonlinear iterations 3

MAX CONVFAIL Maximum no. of convergence failures 10
HNIL WARNS Maximum no. of warnings for tn + h = tn 10
STAB LIM Flag to activate stability limit detection 0

Real optional inputs (FCVSETRIN)
Key Optional input Default value

INIT STEP Initial step size estimated
MAX STEP Maximum absolute step size ∞
MIN STEP Minimum absolute step size 0.0
STOP TIME Value of tstop undefined

NLCONV COEF Coefficient in the nonlinear convergence test 0.1

This computes the EWT array normally defined by Eq. (2.6). The array EWT, of length NEQ or NLOCAL,
must already have been declared by the user. The error return flag IER is zero if successful, and
negative if there was a memory error.

To obtain the estimated local errors, following a successful call to FCVSOLVE, make the following
call:

CALL FCVGETESTLOCALERR (ELE, IER)

This computes the ELE array of estimated local errors as of the last step taken. The array ELE must
already have been declared by the user. The error return flag IER is zero if successful, and negative
if there was a memory error.

5.6 Usage of the FCVROOT interface to rootfinding

The fcvroot interface package allows programs written in Fortran to use the rootfinding feature
of the cvode solver module. The user-callable functions in fcvroot, with the corresponding cvode

functions, are as follows:

• FCVROOTINIT interfaces to CVodeRootInit.

• FCVROOTINFO interfaces to CVodeGetRootInfo.

• FCVROOTFREE interfaces to CVodeRootFree.

Note that at this time, fcvroot does not provide support to specify the direction of zero-crossing that
is to be monitored. Instead, all roots are considered. However, the actual direction of zero-crossing is
reported (through the sign of the non-zero elements in the array INFO returned by FCVROTINFO).

In order to use the rootfinding feature of cvode, the following call must be made, after calling
FCVMALLOC but prior to calling FCVODE, to allocate and initialize memory for the FCVROOT module:

CALL FCVROOTINIT (NRTFN, IER)

The arguments are as follows: NRTFN is the number of root functions. IER is a return completion flag;
its values are 0 for success, −1 if the CVODE memory was NULL, and −11 if a memory allocation failed.

To specifiy the functions whose roots are to be found, the user must define the following routine:
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Table 5.2: Description of the fcvode optional output arrays IOUT and ROUT

Integer output array IOUT

Index Optional output cvode function
cvode main solver

1 LENRW CVodeGetWorkSpace

2 LENIW CVodeGetWorkSpace

3 NST CVodeGetNumSteps

4 NFE CVodeGetNumRhsEvals

5 NETF CVodeGetNumErrTestFails

6 NCFN CVodeGetNumNonlinSolvConvFails

7 NNI CVodeGetNumNonlinSolvIters

8 NSETUPS CVodeGetNumLinSolvSetups

9 QU CVodeGetLastOrder

10 QCUR CVodeGetCurrentOrder

11 NOR CVodeGetNumStabLimOrderReds

12 NGE CVodeGetNumGEvals

cvdls linear solvers
13 LENRWLS CVDlsGetWorkSpace

14 LENIWLS CVDlsGetWorkSpace

15 LS FLAG CVDlsGetLastFlag

16 NFELS CVDlsGetNumRhsEvals

17 NJE CVDlsGetNumJacEvals

cvdiag linear solver
13 LENRWLS CVDiagGetWorkSpace

14 LENIWLS CVDiagGetWorkSpace

15 LS FLAG CVDiagGetLastFlag

16 NFELS CVDiagGetNumRhsEvals

cvsls linear solvers
14 LS FLAG CVSlsGetLastFlag

16 NJE CVSlsGetNumJacEvals

cvspils linear solvers
13 LENRWLS CVSpilsGetWorkSpace

14 LENIWLS CVSpilsGetWorkSpace

15 LS FLAG CVSpilsGetLastFlag

16 NFELS CVSpilsGetNumRhsEvals

17 NJTV CVSpilsGetNumJacEvals

18 NPE CVSpilsGetNumPrecEvals

19 NPS CVSpilsGetNumPrecSolves

20 NLI CVSpilsGetNumLinIters

21 NCFL CVSpilsGetNumConvFails

Real output array ROUT

Index Optional output cvode function
1 H0U CVodeGetActualInitStep

2 HU CVodeGetLastStep

3 HCUR CVodeGetCurrentStep

4 TCUR CVodeGetCurrentTime

5 TOLSF CVodeGetTolScaleFactor

6 UROUND unit roundoff
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SUBROUTINE FCVROOTFN (T, Y, G, IPAR, RPAR, IER)

DIMENSION Y(*), G(*), IPAR(*), RPAR(*)

It must set the G array, of length NRTFN, with components gi(t, y), as a function of T = t and the array
Y = y. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FCVMALLOC. Set IER on 0 if successful, or on a non-zero value if an error occurred.

When making calls to FCVODE to solve the ODE system, the occurrence of a root is flagged by the
return value IER = 2. In that case, if NRTFN > 1, the functions gi which were found to have a root
can be identified by making the following call:

CALL FCVROOTINFO (NRTFN, INFO, IER)

The arguments are as follows: NRTFN is the number of root functions. INFO is an integer array of
length NRTFN with root information. IER is a return completion flag; its values are 0 for success,
negative if there was a memory failure. The returned values of INFO(i) (i= 1, . . . , NRTFN) are 0 or
±1, such that INFO(i) = +1 if gi was found to have a root and gi is increasing, INFO(i) = −1 if gi
was found to have a root and gi is dereasing, and INFO(i) = 0 otherwise.

The total number of calls made to the root function FCVROOTFN, denoted NGE, can be obtained
from IOUT(12). If the fcvode/cvode memory block is reinitialized to solve a different problem via
a call to FCVREINIT, then the counter NGE is reset to zero.

To free the memory resources allocated by a prior call to FCVROOTINIT, make the following call:

CALL FCVROOTFREE

5.7 Usage of the FCVBP interface to CVBANDPRE

The fcvbp interface sub-module is a package of C functions which, as part of the fcvode interface
module, support the use of the cvode solver with the serial nvector serial module, and the
combination of the cvbandpre preconditioner module (see §4.7.1) with any of the Krylov iterative
linear solvers.

The two user-callable functions in this package, with the corresponding cvode function around
which they wrap, are:

• FCVBPINIT interfaces to CVBandPrecInit.

• FCVBPOPT interfaces to cvbandpre optional output functions.

As with the rest of the fcvode routines, the names of the user-supplied routines are mapped to
actual values through a series of definitions in the header file fcvbp.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.

1. Right-hand side specification

2. nvector module initialization

3. Problem specification

4. Set optional inputs

5. Linear solver specification

First, specify one of the cvspils iterative linear solvers, by calling one of FCVSPGMR, FCVSPBCG, or
FCVSPTFQMR.

Then, to initialize the cvbandpre preconditioner, make the following call:

CALL FCVBPINIT(NEQ, MU, ML, IER)
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The arguments are as follows. NEQ is the problem size. MU and ML are the upper and lower half-
bandwidths of the band matrix that is retained as an approximation of the Jacobian. IER is a
return completion flag. A value of 0 indicates success, while a value of −1 indicates that a memory
failure occurred.

Optionally, to specify that spgmr, spbcg, or sptfqmr should use the supplied FCVJTIMES, make
the call

CALL FCVSPILSSETJAC(FLAG, IER)

with FLAG 6= 0 (see step 5 in §5.4 for details).

6. Problem solution

7. cvbandpre Optional outputs

Optional outputs specific to the spgmr, spbcg, or sptfqmr solver are listed in Table 5.2. To
obtain the optional outputs associated with the cvbandpre module, make the following call:

CALL FCVBPOPT(LENRWBP, LENIWBP, NFEBP)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRWBP is the length of real preconditioner work space, in realtype words. LENIWBP is the length
of integer preconditioner work space, in integer words. NFEBP is the number of f(t, y) evaluations
(calls to FCVFUN) for difference-quotient banded Jacobian approximations.

8. Memory deallocation

(The memory allocated for the fcvbp module is deallocated automatically by FCVFREE.)

5.8 Usage of the FCVBBD interface to CVBBDPRE

The fcvbbd interface sub-module is a package of C functions which, as part of the fcvode interface
module, support the use of the cvode solver with the parallel nvector parallel module, and the
combination of the cvbbdpre preconditioner module (see §4.7.2) with any of the Krylov iterative
linear solvers.

The user-callable functions in this package, with the corresponding cvode and cvbbdpre func-
tions, are as follows:

• FCVBBDINIT interfaces to CVBBDPrecInit.

• FCVBBDREINIT interfaces to CVBBDPrecReInit.

• FCVBBDOPT interfaces to cvbbdpre optional output functions.

In addition to the Fortran right-hand side function FCVFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within cvbbdpre or cvode):

fcvbbd routine cvode function cvode type of
(Fortran, user-supplied) (C, interface) interface function

FCVLOCFN FCVgloc CVLocalFn

FCVCOMMF FCVcfn CVCommFn

FCVJTIMES FCVJtimes CVSpilsJacTimesVecFn
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As with the rest of the fcvode routines, the names of all user-supplied routines here are fixed, in
order to maximize portability for the resulting mixed-language program. Additionally, based on flags
discussed above in §5.3, the names of the user-supplied routines are mapped to actual values through
a series of definitions in the header file fcvbbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4 are grayed-out.

1. Right-hand side specification

2. nvector module initialization

3. Problem specification

4. Set optional inputs

5. Linear solver specification

First, specify one of the cvspils iterative linear solvers, by calling one of FCVSPGMR, FCVSPBCG, or
FCVSPTFQMR.

Then, to initialize the cvbbdpre preconditioner, make the following call:

CALL FCVBBDINIT(NLOCAL, MUDQ, MLDQ, MU, ML, DQRELY, IER)

The arguments are as follows. NLOCAL is the local size of vectors on this processor. MUDQ and MLDQ

are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients. These may be smaller than the true half-bandwidths of the Jacobian of
the local block of g, when smaller values may provide greater efficiency. MU and ML are the upper
and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block. These may be smaller than MUDQ and MLDQ. DQRELY is the relative increment factor
in y for difference quotients (optional). A value of 0.0 indicates the default,

√
unit roundoff. IER

is a return completion flag. A value of 0 indicates success, while a value of −1 indicates that a
memory failure occurred or that an input had an illegal value.

Optionally, to specify that spgmr, spbcg, or sptfqmr should use the supplied FCVJTIMES, make
the call

CALL FCVSPILSSETJAC(FLAG, IER)

with FLAG 6= 0 (see step 5 in §5.4 for details).

6. Problem solution

7. cvbbdpre Optional outputs

Optional outputs specific to the spgmr, spbcg, or sptfqmr solver are listed in Table 5.2. To
obtain the optional outputs associated with the cvbbdpre module, make the following call:

CALL FCVBBDOPT(LENRWBBD, LENIWBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRWBBD is the length of real preconditioner work space, in realtype words. LENIWBBD is the
length of integer preconditioner work space, in integer words. These sizes are local to the current
processor. NGEBBD is the number of g(t, y) evaluations (calls to FCVLOCFN) so far.

8. Problem reinitialization

If a sequence of problems of the same size is being solved using the same linear solver (spgmr,
spbcg, or sptfqmr) in combination with the cvbbdpre preconditioner, then the cvode package
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can be re-initialized for the second and subsequent problems by calling FCVREINIT, following
which a call to FCVBBDINIT may or may not be needed. If the input arguments are the same, no
FCVBBDINIT call is needed. If there is a change in input arguments other than MU or ML, then the
user program should make the call

CALL FCVBBDREINIT(NLOCAL, MUDQ, MLDQ, DQRELY, IER)

This reinitializes the cvbbdpre preconditioner, but without reallocating its memory. The argu-
ments of the FCVBBDREINIT routine have the same names and meanings as those of FCVBBDINIT. If
the value of MU or ML is being changed, then a call to FCVBBDINIT must be made. Finally, if there
is a change in any of the linear solver inputs, then a call to FCVSPGMR, FCVSPBCG, or FCVSPTFQMR
must also be made; in this case the linear solver memory is reallocated.

9. Memory deallocation

(The memory allocated for the fcvbbd module is deallocated automatically by FCVFREE.)

10. User-supplied routines

The following two routines must be supplied for use with the cvbbdpre module:

SUBROUTINE FCVGLOCFN (NLOC, T, YLOC, GLOC, IPAR, RPAR, IER)

DIMENSION YLOC(*), GLOC(*), IPAR(*), RPAR(*)

This routine is to evaluate the function g(t, y) approximating f (possibly identical to f), in terms
of T = t, and the array YLOC (of length NLOC), which is the sub-vector of y local to this processor.
The resulting (local) sub-vector is to be stored in the array GLOC. The arrays IPAR (of integers)
and RPAR (of reals) contain user data and are the same as those passed to FCVMALLOC. IER is
an error return flag which should be set to 0 if successful, a positive value if a recoverable error
occurred (in which case cvode will attempt to correct), or a negative value if FCVGLOCFN failed
unrecoverably (in which case the integration is halted).

SUBROUTINE FCVCOMMFN (NLOC, T, YLOC, IPAR, RPAR, IER)

DIMENSION YLOC(*), IPAR(*), RPAR(*)

This routine is to perform the inter-processor communication necessary for the FCVGLOCFN routine.
Each call to FCVCOMMFN is preceded by a call to the right-hand side routine FCVFUN with the same
arguments T and YLOC. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FCVMALLOC. IER is an error return flag (currently not used; set IER=0).
Thus FCVCOMMFN can omit any communications done by FCVFUN if relevant to the evaluation of
GLOC. IER is an error return flag which should be set to 0 if successful, a positive value if a
recoverable error occurred (in which case cvode will attempt to correct), or a negative value if
FCVCOMMFN failed unrecoverably (in which case the integration is halted).

The subroutine FCVCOMMFN must be supplied even if it is not needed and must return IER=0.!

Optionally, the user can supply a routine FCVJTIMES for the evaluation of Jacobian-vector prod-
ucts, as described above in step 5 in §5.4.



Chapter 6

Description of the NVECTOR
module

The sundials solvers are written in a data-independent manner. They all operate on generic vectors
(of type N Vector) through a set of operations defined by the particular nvector implementation.
Users can provide their own specific implementation of the nvector module, or use one of four
provided within sundials – a serial implementation and three parallel implementations. The generic
operations are described below. In the sections following, the implementations provided with sundials

are described.
The generic N Vector type is a pointer to a structure that has an implementation-dependent

content field containing the description and actual data of the vector, and an ops field pointing to a
structure with generic vector operations. The type N Vector is defined as

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {

void *content;

struct _generic_N_Vector_Ops *ops;

};

The generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {

N_Vector (*nvclone)(N_Vector);

N_Vector (*nvcloneempty)(N_Vector);

void (*nvdestroy)(N_Vector);

void (*nvspace)(N_Vector, long int *, long int *);

realtype* (*nvgetarraypointer)(N_Vector);

void (*nvsetarraypointer)(realtype *, N_Vector);

void (*nvlinearsum)(realtype, N_Vector, realtype, N_Vector, N_Vector);

void (*nvconst)(realtype, N_Vector);

void (*nvprod)(N_Vector, N_Vector, N_Vector);

void (*nvdiv)(N_Vector, N_Vector, N_Vector);

void (*nvscale)(realtype, N_Vector, N_Vector);

void (*nvabs)(N_Vector, N_Vector);

void (*nvinv)(N_Vector, N_Vector);

void (*nvaddconst)(N_Vector, realtype, N_Vector);

realtype (*nvdotprod)(N_Vector, N_Vector);

realtype (*nvmaxnorm)(N_Vector);

realtype (*nvwrmsnorm)(N_Vector, N_Vector);
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realtype (*nvwrmsnormmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvmin)(N_Vector);

realtype (*nvwl2norm)(N_Vector, N_Vector);

realtype (*nvl1norm)(N_Vector);

void (*nvcompare)(realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);

booleantype (*nvconstrmask)(N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient)(N_Vector, N_Vector);

};

The generic nvector module defines and implements the vector operations acting on N Vector.
These routines are nothing but wrappers for the vector operations defined by a particular nvector

implementation, which are accessed through the ops field of the N Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic nvector

module, namely N VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)

{

z->ops->nvscale(c, x, z);

}

Table 6.1 contains a complete list of all vector operations defined by the generic nvector module.
Finally, note that the generic nvector module defines the functions N VCloneVectorArray and

N VCloneEmptyVectorArray. Both functions create (by cloning) an array of count variables of type
N Vector, each of the same type as an existing N Vector. Their prototypes are

N_Vector *N_VCloneVectorArray(int count, N_Vector w);

N_Vector *N_VCloneEmptyVectorArray(int count, N_Vector w);

and their definitions are based on the implementation-specific N VClone and N VCloneEmpty opera-
tions, respectively.

An array of variables of type N Vector can be destroyed by calling N VDestroyVectorArray, whose
prototype is

void N_VDestroyVectorArray(N_Vector *vs, int count);

and whose definition is based on the implementation-specific N VDestroy operation.
A particular implementation of the nvector module must:

• Specify the content field of N Vector.

• Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one nvector module (each
with different N Vector internal data representations) in the same code.

• Define and implement user-callable constructor and destructor routines to create and free an
N Vector with the new content field and with ops pointing to the new vector operations.

• Optionally, define and implement additional user-callable routines acting on the newly defined
N Vector (e.g., a routine to print the content for debugging purposes).

• Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N Vector.
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Table 6.1: Description of the NVECTOR operations

Name Usage and Description

N VClone v = N VClone(w);

Creates a new N Vector of the same type as an existing vector w and sets
the ops field. It does not copy the vector, but rather allocates storage
for the new vector.

N VCloneEmpty v = N VCloneEmpty(w);

Creates a new N Vector of the same type as an existing vector w and
sets the ops field. It does not allocate storage for data.

N VDestroy N VDestroy(v);

Destroys the N Vector v and frees memory allocated for its internal
data.

N VSpace N VSpace(nvSpec, &lrw, &liw);

Returns storage requirements for one N Vector. lrw contains the num-
ber of realtype words and liw contains the number of integer words.
This function is advisory only, for use in determining a user’s total space
requirements; it could be a dummy function in a user-supplied nvector

module if that information is not of interest.

N VGetArrayPointer vdata = N VGetArrayPointer(v);

Returns a pointer to a realtype array from the N Vector v. Note
that this assumes that the internal data in N Vector is a contiguous
array of realtype. This routine is only used in the solver-specific in-
terfaces to the dense and banded (serial) linear solvers, the sparse lin-
ear solvers (serial and threaded), and in the interfaces to the banded
(serial) and band-block-diagonal (parallel) preconditioner modules pro-
vided with sundials.

N VSetArrayPointer N VSetArrayPointer(vdata, v);

Overwrites the data in an N Vector with a given array of realtype.
Note that this assumes that the internal data in N Vector is a contigu-
ous array of realtype. This routine is only used in the interfaces to
the dense (serial) linear solver, hence need not exist in a user-supplied
nvector module for a parallel environment.

N VLinearSum N VLinearSum(a, x, b, y, z);

Performs the operation z = ax+ by, where a and b are realtype scalars
and x and y are of type N Vector: zi = axi + byi, i = 0, . . . , n − 1.

N VConst N VConst(c, z);

Sets all components of the N Vector z to realtype c: zi = c, i =
0, . . . , n − 1.

continued on next page
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continued from last page

Name Usage and Description

N VProd N VProd(x, y, z);

Sets the N Vector z to be the component-wise product of the N Vector

inputs x and y: zi = xiyi, i = 0, . . . , n − 1.

N VDiv N VDiv(x, y, z);

Sets the N Vector z to be the component-wise ratio of the N Vector

inputs x and y: zi = xi/yi, i = 0, . . . , n − 1. The yi may not be tested
for 0 values. It should only be called with a y that is guaranteed to have
all nonzero components.

N VScale N VScale(c, x, z);

Scales the N Vector x by the realtype scalar c and returns the result
in z: zi = cxi, i = 0, . . . , n − 1.

N VAbs N VAbs(x, z);

Sets the components of the N Vector z to be the absolute values of the
components of the N Vector x: yi = |xi|, i = 0, . . . , n − 1.

N VInv N VInv(x, z);

Sets the components of the N Vector z to be the inverses of the compo-
nents of the N Vector x: zi = 1.0/xi, i = 0, . . . , n− 1. This routine may
not check for division by 0. It should be called only with an x which is
guaranteed to have all nonzero components.

N VAddConst N VAddConst(x, b, z);

Adds the realtype scalar b to all components of x and returns the result
in the N Vector z: zi = xi + b, i = 0, . . . , n − 1.

N VDotProd d = N VDotProd(x, y);

Returns the value of the ordinary dot product of x and y: d =
∑n−1

i=0 xiyi.

N VMaxNorm m = N VMaxNorm(x);

Returns the maximum norm of the N Vector x: m = maxi |xi|.
N VWrmsNorm m = N VWrmsNorm(x, w)

Returns the weighted root-mean-square norm of the N Vector x with

realtype weight vector w: m =

√

(

∑n−1
i=0 (xiwi)2

)

/n.

N VWrmsNormMask m = N VWrmsNormMask(x, w, id);

Returns the weighted root mean square norm of the N Vector x with
realtype weight vector w built using only the elements of x correspond-
ing to nonzero elements of the N Vector id:

m =

√

(

∑n−1
i=0 (xiwisign(idi))2

)

/n.

N VMin m = N VMin(x);

Returns the smallest element of the N Vector x: m = mini xi.

continued on next page
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continued from last page

Name Usage and Description

N VWL2Norm m = N VWL2Norm(x, w);

Returns the weighted Euclidean ℓ2 norm of the N Vector x with

realtype weight vector w: m =
√

∑n−1
i=0 (xiwi)2.

N VL1Norm m = N VL1Norm(x);

Returns the ℓ1 norm of the N Vector x: m =
∑n−1

i=0 |xi|.
N VCompare N VCompare(c, x, z);

Compares the components of the N Vector x to the realtype scalar c

and returns an N Vector z such that: zi = 1.0 if |xi| ≥ c and zi = 0.0
otherwise.

N VInvTest t = N VInvTest(x, z);

Sets the components of the N Vector z to be the inverses of the com-
ponents of the N Vector x, with prior testing for zero values: zi =
1.0/xi, i = 0, . . . , n−1. This routine returns a boolean assigned to TRUE

if all components of x are nonzero (successful inversion) and returns
FALSE otherwise.

N VConstrMask t = N VConstrMask(c, x, m);

Performs the following constraint tests: xi > 0 if ci = 2, xi ≥ 0 if ci = 1,
xi ≤ 0 if ci = −1, xi < 0 if ci = −2. There is no constraint on xi if
ci = 0. This routine returns a boolean assigned to FALSE if any element
failed the constraint test and assigned to TRUE if all passed. It also
sets a mask vector m, with elements equal to 1.0 where the constraint
test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.

N VMinQuotient minq = N VMinQuotient(num, denom);

This routine returns the minimum of the quotients obtained by term-
wise dividing numi by denomi. A zero element in denom will be skipped.
If no such quotients are found, then the large value BIG REAL (defined
in the header file sundials types.h) is returned.

6.1 The NVECTOR SERIAL implementation

The serial implementation of the nvector module provided with sundials, nvector serial, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own data which specifies the ownership of
data.

struct _N_VectorContent_Serial {

long int length;

booleantype own_data;

realtype *data;

};

The following five macros are provided to access the content of an nvector serial vector. The suffix
S in the names denotes the serial version.

• NV CONTENT S

This routine gives access to the contents of the serial vector N Vector.
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The assignment v cont = NV CONTENT S(v) sets v cont to be a pointer to the serial N Vector

content structure.

Implementation:

#define NV_CONTENT_S(v) ( (N_VectorContent_Serial)(v->content) )

• NV OWN DATA S, NV DATA S, NV LENGTH S

These macros give individual access to the parts of the content of a serial N Vector.

The assignment v data = NV DATA S(v) sets v data to be a pointer to the first component of
the data for the N Vector v. The assignment NV DATA S(v) = v data sets the component array
of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH S(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH S(v) = len v sets the length of v to be len v.

Implementation:

#define NV_OWN_DATA_S(v) ( NV_CONTENT_S(v)->own_data )

#define NV_DATA_S(v) ( NV_CONTENT_S(v)->data )

#define NV_LENGTH_S(v) ( NV_CONTENT_S(v)->length )

• NV Ith S

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith S(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith S(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_S(v,i) ( NV_DATA_S(v)[i] )

The nvector serial module defines serial implementations of all vector operations listed in Table
6.1. Their names are obtained from those in Table 6.1 by appending the suffix Serial. The module
nvector serial provides the following additional user-callable routines:

• N VNew Serial

This function creates and allocates memory for a serial N Vector. Its only argument is the
vector length.

N_Vector N_VNew_Serial(long int vec_length);

• N VNewEmpty Serial

This function creates a new serial N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Serial(long int vec_length);

• N VMake Serial

This function creates and allocates memory for a serial vector with user-provided data array.

N_Vector N_VMake_Serial(long int vec_length, realtype *v_data);

• N VCloneVectorArray Serial

This function creates (by cloning) an array of count serial vectors.

N_Vector *N_VCloneVectorArray_Serial(int count, N_Vector w);

• N VCloneEmptyVectorArray Serial

This function creates (by cloning) an array of count serial vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Serial(int count, N_Vector w);
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• N VDestroyVectorArray Serial

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Serial or with N VCloneEmptyVectorArray Serial.

void N_VDestroyVectorArray_Serial(N_Vector *vs, int count);

• N VPrint Serial

This function prints the content of a serial vector to stdout.

void N_VPrint_Serial(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA S(v) and then access v data[i] within the loop than
it is to use NV Ith S(v,i) within the loop.

• N VNewEmpty Serial, N VMake Serial, and N VCloneEmptyVectorArray Serial set the field !

own data = FALSE. N VDestroy Serial and N VDestroyVectorArray Serial will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector serial implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.2 The NVECTOR PARALLEL implementation

The nvector parallel implementation of the nvector module provided with sundials is based on
MPI. It defines the content field of N Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, an
a boolean flag own data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {

long int local_length;

long int global_length;

booleantype own_data;

realtype *data;

MPI_Comm comm;

};

The following seven macros are provided to access the content of a nvector parallel vector. The
suffix P in the names denotes the distributed memory parallel version.

• NV CONTENT P

This macro gives access to the contents of the parallel vector N Vector.

The assignment v cont = NV CONTENT P(v) sets v cont to be a pointer to the N Vector content
structure of type struct N VectorParallelContent.

Implementation:

#define NV_CONTENT_P(v) ( (N_VectorContent_Parallel)(v->content) )

• NV OWN DATA P, NV DATA P, NV LOCLENGTH P, NV GLOBLENGTH P

These macros give individual access to the parts of the content of a parallel N Vector.
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The assignment v data = NV DATA P(v) sets v data to be a pointer to the first component of
the local data for the N Vector v. The assignment NV DATA P(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v llen = NV LOCLENGTH P(v) sets v llen to be the length of the local part of
v. The call NV LENGTH P(v) = llen v sets the local length of v to be llen v.

The assignment v glen = NV GLOBLENGTH P(v) sets v glen to be the global length of the vector
v. The call NV GLOBLENGTH P(v) = glen v sets the global length of v to be glen v.

Implementation:

#define NV_OWN_DATA_P(v) ( NV_CONTENT_P(v)->own_data )

#define NV_DATA_P(v) ( NV_CONTENT_P(v)->data )

#define NV_LOCLENGTH_P(v) ( NV_CONTENT_P(v)->local_length )

#define NV_GLOBLENGTH_P(v) ( NV_CONTENT_P(v)->global_length )

• NV COMM P

This macro provides access to the MPI communicator used by the nvector parallel vectors.

Implementation:

#define NV_COMM_P(v) ( NV_CONTENT_P(v)->comm )

• NV Ith P

This macro gives access to the individual components of the local data array of an N Vector.

The assignment r = NV Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n − 1, where n is the local length.

Implementation:

#define NV_Ith_P(v,i) ( NV_DATA_P(v)[i] )

The nvector parallel module defines parallel implementations of all vector operations listed in
Table 6.1 Their names are obtained from those in Table 6.1 by appending the suffix Parallel. The
module nvector parallel provides the following additional user-callable routines:

• N VNew Parallel

This function creates and allocates memory for a parallel vector.

N_Vector N_VNew_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VNewEmpty Parallel

This function creates a new parallel N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Parallel(MPI_Comm comm,

long int local_length,

long int global_length);

• N VMake Parallel

This function creates and allocates memory for a parallel vector with user-provided data array.
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N_Vector N_VMake_Parallel(MPI_Comm comm,

long int local_length,

long int global_length,

realtype *v_data);

• N VCloneVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors.

N_Vector *N_VCloneVectorArray_Parallel(int count, N_Vector w);

• N VCloneEmptyVectorArray Parallel

This function creates (by cloning) an array of count parallel vectors, each with an empty (NULL)
data array.

N_Vector *N_VCloneEmptyVectorArray_Parallel(int count, N_Vector w);

• N VDestroyVectorArray Parallel

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Parallel or with N VCloneEmptyVectorArray Parallel.

void N_VDestroyVectorArray_Parallel(N_Vector *vs, int count);

• N VPrint Parallel

This function prints the content of a parallel vector to stdout.

void N_VPrint_Parallel(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the local
component array via v data = NV DATA P(v) and then access v data[i] within the loop than
it is to use NV Ith P(v,i) within the loop.

• N VNewEmpty Parallel, N VMake Parallel, and N VCloneEmptyVectorArray Parallel set the !

field own data = FALSE. N VDestroy Parallel and N VDestroyVectorArray Parallel will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector parallel implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.3 The NVECTOR OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-

tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP nvector implementation provided with sundials, nvector openmp, defines the
content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.
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struct _N_VectorContent_OpenMP {

long int length;

booleantype own_data;

realtype *data;

int num_threads;

};

The following six macros are provided to access the content of an nvector openmp vector. The
suffix OMP in the names denotes the OpenMP version.

• NV CONTENT OMP

This routine gives access to the contents of the OpenMP vector N Vector.

The assignment v cont = NV CONTENT OMP(v) sets v cont to be a pointer to the OpenMP
N Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ( (N_VectorContent_OpenMP)(v->content) )

• NV OWN DATA OMP, NV DATA OMP, NV LENGTH OMP, NV NUM THREADS OMP

These macros give individual access to the parts of the content of a OpenMP N Vector.

The assignment v data = NV DATA OMP(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA OMP(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH OMP(v) sets v len to be the length of v. On the other
hand, the call NV LENGTH OMP(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS OMP(v) sets v num threads to be the num-
ber of threads from v. On the other hand, the call NV NUM THREADS OMP(v) = num threads v

sets the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_OMP(v) ( NV_CONTENT_OMP(v)->own_data )

#define NV_DATA_OMP(v) ( NV_CONTENT_OMP(v)->data )

#define NV_LENGTH_OMP(v) ( NV_CONTENT_OMP(v)->length )

#define NV_NUM_THREADS_OMP(v) ( NV_CONTENT_OMP(v)->num_threads )

• NV Ith OMP

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_OMP(v,i) ( NV_DATA_OMP(v)[i] )

The nvector openmp module defines OpenMP implementations of all vector operations listed in
Table 6.1. Their names are obtained from those in Table 6.1 by appending the suffix OpenMP. The
module nvector openmp provides the following additional user-callable routines:

• N VNew OpenMP

This function creates and allocates memory for a OpenMP N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_OpenMP(long int vec_length, int num_threads);
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• N VNewEmpty OpenMP

This function creates a new OpenMP N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_OpenMP(long int vec_length, int num_threads);

• N VMake OpenMP

This function creates and allocates memory for a OpenMP vector with user-provided data array.

N_Vector N_VMake_OpenMP(long int vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors.

N_Vector *N_VCloneVectorArray_OpenMP(int count, N_Vector w);

• N VCloneEmptyVectorArray OpenMP

This function creates (by cloning) an array of count OpenMP vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneEmptyVectorArray_OpenMP(int count, N_Vector w);

• N VDestroyVectorArray OpenMP

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray OpenMP or with N VCloneEmptyVectorArray OpenMP.

void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count);

• N VPrint OpenMP

This function prints the content of a OpenMP vector to stdout.

void N_VPrint_OpenMP(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA OMP(v) and then access v data[i] within the loop
than it is to use NV Ith OMP(v,i) within the loop.

• N VNewEmpty OpenMP, N VMake OpenMP, and N VCloneEmptyVectorArray OpenMP set the field !

own data = FALSE. N VDestroy OpenMP and N VDestroyVectorArray OpenMP will not attempt
to free the pointer data for any N Vector with own data set to FALSE. In such a case, it is the
user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector openmp implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.4 The NVECTOR PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, sundials provides an implementation of nvector using OpenMP, called nvec-

tor openmp, and an implementation using Pthreads, called nvector pthreads. Testing has shown
that vectors should be of length at least 100, 000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads nvector implementation provided with sundials, nvector pthreads, defines
the content field of N Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using POSIX threads (Pthreads).
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struct _N_VectorContent_Pthreads {

long int length;

booleantype own_data;

realtype *data;

int num_threads;

};

The following six macros are provided to access the content of an nvector pthreads vector. The
suffix PT in the names denotes the Pthreads version.

• NV CONTENT PT

This routine gives access to the contents of the Pthreads vector N Vector.

The assignment v cont = NV CONTENT PT(v) sets v cont to be a pointer to the Pthreads
N Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ( (N_VectorContent_Pthreads)(v->content) )

• NV OWN DATA PT, NV DATA PT, NV LENGTH PT, NV NUM THREADS PT

These macros give individual access to the parts of the content of a Pthreads N Vector.

The assignment v data = NV DATA PT(v) sets v data to be a pointer to the first component
of the data for the N Vector v. The assignment NV DATA PT(v) = v data sets the component
array of v to be v data by storing the pointer v data.

The assignment v len = NV LENGTH PT(v) sets v len to be the length of v. On the other hand,
the call NV LENGTH PT(v) = len v sets the length of v to be len v.

The assignment v num threads = NV NUM THREADS PT(v) sets v num threads to be the number
of threads from v. On the other hand, the call NV NUM THREADS PT(v) = num threads v sets
the number of threads for v to be num threads v.

Implementation:

#define NV_OWN_DATA_PT(v) ( NV_CONTENT_PT(v)->own_data )

#define NV_DATA_PT(v) ( NV_CONTENT_PT(v)->data )

#define NV_LENGTH_PT(v) ( NV_CONTENT_PT(v)->length )

#define NV_NUM_THREADS_PT(v) ( NV_CONTENT_PT(v)->num_threads )

• NV Ith PT

This macro gives access to the individual components of the data array of an N Vector.

The assignment r = NV Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n − 1 for a vector of length n.

Implementation:

#define NV_Ith_PT(v,i) ( NV_DATA_PT(v)[i] )

The nvector pthreads module defines Pthreads implementations of all vector operations listed in
Table 6.1. Their names are obtained from those in Table 6.1 by appending the suffix Pthreads. The
module nvector pthreads provides the following additional user-callable routines:

• N VNew Pthreads

This function creates and allocates memory for a Pthreads N Vector. Arguments are the vector
length and number of threads.

N_Vector N_VNew_Pthreads(long int vec_length, int num_threads);
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• N VNewEmpty Pthreads

This function creates a new Pthreads N Vector with an empty (NULL) data array.

N_Vector N_VNewEmpty_Pthreads(long int vec_length, int num_threads);

• N VMake Pthreads

This function creates and allocates memory for a Pthreads vector with user-provided data array.

N_Vector N_VMake_Pthreads(long int vec_length, realtype *v_data, int num_threads);

• N VCloneVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors.

N_Vector *N_VCloneVectorArray_Pthreads(int count, N_Vector w);

• N VCloneEmptyVectorArray Pthreads

This function creates (by cloning) an array of count Pthreads vectors, each with an empty
(NULL) data array.

N_Vector *N_VCloneEmptyVectorArray_Pthreads(int count, N_Vector w);

• N VDestroyVectorArray Pthreads

This function frees memory allocated for the array of count variables of type N Vector created
with N VCloneVectorArray Pthreads or with N VCloneEmptyVectorArray Pthreads.

void N_VDestroyVectorArray_Pthreads(N_Vector *vs, int count);

• N VPrint Pthreads

This function prints the content of a Pthreads vector to stdout.

void N_VPrint_Pthreads(N_Vector v);

Notes

• When looping over the components of an N Vector v, it is more efficient to first obtain the
component array via v data = NV DATA PT(v) and then access v data[i] within the loop than
it is to use NV Ith PT(v,i) within the loop.

• N VNewEmpty Pthreads, N VMake Pthreads, and N VCloneEmptyVectorArray Pthreads set the !

field own data = FALSE. N VDestroy Pthreads and N VDestroyVectorArray Pthreads will not
attempt to free the pointer data for any N Vector with own data set to FALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

• To maximize efficiency, vector operations in the nvector pthreads implementation that have !

more than one N Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N Vector

arguments that were all created with the same internal representations.

6.5 NVECTOR Examples

There are NVector examples that may be installed for each implementation: serial, parallel, OpenMP,
and Pthreads. Each implementation makes use of the functions in test nvector.c. These example
functions show simple usage of the NVector family of functions. The input to the examples are the
vector length, number of threads (if threaded implementation), and a print timing flag.
The following is a list of the example functions in test nvector.c:

• Test N VClone: Creates clone of vector and checks validity of clone.

• Test N VCloneEmpty: Creates clone of empty vector and checks validity of clone.
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• Test N VCloneVectorArray: Creates clone of vector array and checks validity of cloned array.

• Test N VCloneVectorArray: Creates clone of empty vector array and checks validity of cloned
array.

• Test N VGetArrayPointer: Get array pointer.

• Test N VSetArrayPointer: Allocate new vector, set pointer to new vector array, and check
values.

• Test N VLinearSum Case 1a: Test y = x + y

• Test N VLinearSum Case 1b: Test y = -x + y

• Test N VLinearSum Case 1c: Test y = ax + y

• Test N VLinearSum Case 2a: Test x = x + y

• Test N VLinearSum Case 2b: Test x = x - y

• Test N VLinearSum Case 2c: Test x = x + by

• Test N VLinearSum Case 3: Test z = x + y

• Test N VLinearSum Case 4a: Test z = x - y

• Test N VLinearSum Case 4b: Test z = -x + y

• Test N VLinearSum Case 5a: Test z = x + by

• Test N VLinearSum Case 5b: Test z = ax + y

• Test N VLinearSum Case 6a: Test z = -x + by

• Test N VLinearSum Case 6b: Test z = ax - y

• Test N VLinearSum Case 7: Test z = a(x + y)

• Test N VLinearSum Case 8: Test z = a(x - y)

• Test N VLinearSum Case 9: Test z = ax + by

• Test N VConst: Fill vector with constant and check result.

• Test N VProd: Test vector multiply: z = x * y

• Test N VDiv: Test vector division: z = x / y

• Test N VScale: Case 1: scale: x = cx

• Test N VScale: Case 2: copy: z = x

• Test N VScale: Case 3: negate: z = -x

• Test N VScale: Case 4: combination: z = cx

• Test N VAbs: Create absolute value of vector.

• Test N VAddConst: add constant vector: z = c + x

• Test N VDotProd: Calculate dot product of two vectors.

• Test N VMaxNorm: Create vector with known values, find and validate max norm.

• Test N VWrmsNorm: Create vector of known values, find and validate weighted root mean square.
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• Test N VWrmsNormMask: Case 1: Create vector of known values, find and validate weighted root
mean square using all elements.

• Test N VWrmsNormMask: Case 2: Create vector of known values, find and validate weighted root
mean square using no elements.

• Test N VMin: Create vector, find and validate the min.

• Test N VWL2Norm: Create vector, find and validate the weighted Euclidean L2 norm.

• Test N VL1Norm: Create vector, find and validate the L1 norm.

• Test N VCompare: Compare vector with constant returning and validating comparison vector.

• Test N VInvTest: Test z[i] = 1 / x[i]

• Test N VConstrMask: Test mask of vector x with vector c.

• Test N VMinQuotient: Fill two vectors with known values. Calculate and validate minimum
quotient.

6.6 NVECTOR functions used by CVODE

In Table 6.2 below, we list the vector functions in the nvector module used within the cvode

package. The table also shows, for each function, which of the code modules uses the function. The
cvode column shows function usage within the main integrator module, while the remaining seven
columns show function usage within each of the eight cvode linear solvers, the cvbandpre and
cvbbdpre preconditioner modules, and the fcvode module. Here cvdls stands for cvdense and
cvband; cvspils stands for cvspgmr, cvspbcg, and cvsptfqmr; and cvsls stands for cvklu and
cvsuperlumt.

There is one subtlety in the cvspils column hidden by the table, explained here for the case of the
cvspgmr module. The N VDotProd function is called both within the interface file cvode spgmr.c

and within the implementation files sundials spgmr.c and sundials iterative.c for the generic
spgmr solver upon which the cvspgmr solver is built. Also, although N VDiv and N VProd are
not called within the interface file cvode spgmr.c, they are called within the implementation file
sundials spgmr.c, and so are required by the cvspgmr solver module. Analogous statements apply
to the cvspbcg and cvsptfqmr modules, except that they do not use sundials iterative.c.
This issue does not arise for the other three cvode linear solvers because the generic dense and
band solvers (used in the implementation of cvdense and cvband) do not make calls to any vector
functions and cvdiag is not implemented using a generic diagonal solver.

At this point, we should emphasize that the cvode user does not need to know anything about
the usage of vector functions by the cvode code modules in order to use cvode. The information is
presented as an implementation detail for the interested reader.

The vector functions listed in Table 6.1 that are not used by cvode are: N VWL2Norm, N VL1Norm,
N VWrmsNormMask, N VConstrMask, and N VMinQuotient. Therefore a user-supplied nvector module
for cvode could omit these five functions.
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Table 6.2: List of vector functions usage by cvode code modules
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N VClone X X X

N VCloneEmpty X

N VDestroy X X X

N VSpace X

N VGetArrayPointer X X X X X

N VSetArrayPointer X X

N VLinearSum X X X X

N VConst X X

N VProd X X X

N VDiv X X X

N VScale X X X X X X X

N VAbs X

N VInv X X

N VAddConst X X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X X X X

N VMin X

N VCompare X

N VInvTest X



Chapter 7

Providing Alternate Linear Solver
Modules

The central cvode module interfaces with a linear solver module by way of calls to four functions.
These are denoted here by linit, lsetup, lsolve, and lfree. Briefly, their purposes are as follows:

• linit: initialize memory specific to the linear solver;

• lsetup: evaluate and preprocess the Jacobian or preconditioner;

• lsolve: solve the linear system;

• lfree: free the linear solver memory.

A linear solver module must also provide a user-callable specification function (like those described
in §4.5.3) which will attach the above four functions to the main cvode memory block. The cvode

memory block is a structure defined in the header file cvode impl.h. A pointer to such a structure is
defined as the type CVodeMem. The four fields in a CvodeMem structure that must point to the linear
solver’s functions are cv linit, cv lsetup, cv lsolve, and cv lfree, respectively. Note that of the
four interface functions, only the lsolve function is required. The lfree function must be provided
only if the solver specification function makes any memory allocation. For any of the functions that
are not provided, the corresponding field should be set to NULL. The linear solver specification function
must also set the value of the field cv setupNonNull in the cvode memory block — to TRUE if lsetup
is used, or FALSE otherwise.

Typically, the linear solver will require a block of memory specific to the solver, and a principal
function of the specification function is to allocate that memory block, and initialize it. Then the field
cv lmem in the cvode memory block is available to attach a pointer to that linear solver memory.
This block can then be used to facilitate the exchange of data between the four interface functions.

If the linear solver involves adjustable parameters, the specification function should set the default
values of those. User-callable functions may be defined that could, optionally, override the default
parameter values.

We encourage the use of performance counters in connection with the various operations involved
with the linear solver. Such counters would be members of the linear solver memory block, would
be initialized in the linit function, and would be incremented by the lsetup and lsolve functions.
Then, user-callable functions would be needed to obtain the values of these counters.

For consistency with the existing cvode linear solver modules, we recommend that the return
value of the specification function be 0 for a successful return, and a negative value if an error occurs.
Possible error conditions include: the pointer to the main cvode memory block is NULL, an input is
illegal, the nvector implementation is not compatible, or a memory allocation fails.

These four functions, which interface between cvode and the linear solver module, necessarily
have fixed call sequences. Thus, a user wishing to implement another linear solver within the cvode
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package must adhere to this set of interfaces. The following is a complete description of the call list
for each of these functions. Note that the call list of each function includes a pointer to the main
cvode memory block, by which the function can access various data related to the cvode solution.
The contents of this memory block are given in the file cvode impl.h (but not reproduced here, for
the sake of space).

7.1 Initialization function

The type definition of linit is

linit

Definition int (*linit)(CVodeMem cv mem);

Purpose The purpose of linit is to complete initializations for the specific linear solver, such
as counters and statistics. It should also set pointers to data blocks that will later be
passed to functions associated with the linear solver. The linit function is called once
only, at the start of the problem, during the first call to CVode.

Arguments cv mem is the cvode memory pointer of type CVodeMem.

Return value An linit function should return 0 if it has successfully initialized the cvode linear
solver, and a negative value otherwise.

7.2 Setup function

The type definition of lsetup is

lsetup

Definition int (*lsetup)(CVodeMem cv mem, int convfail, N Vector ypred,

N Vector fpred, booleantype *jcurPtr,

N Vector vtemp1, N Vector vtemp2, N Vector vtemp3);

Purpose The job of lsetup is to prepare the linear solver for subsequent calls to lsolve, in the
solution of systems Mx = b, where M is some approximation to the Newton matrix,
I − γ ∂f/∂y. (See Eq.(2.5)). Here γ is available as cv mem->cv gamma.

The lsetup function may call a user-supplied function, or a function within the linear
solver module, to compute needed data related to the Jacobian matrix ∂f/∂y. Altern-
tively, it may choose to retrieve and use stored values of this data.

In either case, lsetup may also preprocess that data as needed for lsolve, which may
involve calling a generic function (such as for LU factorization). This data may be
intended either for direct use (in a direct linear solver) or for use in a preconditioner (in
a preconditioned iterative linear solver).

The lsetup function is not called at every time step, but only as frequently as the solver
determines that it is appropriate to perform the setup task. In this way, Jacobian-related
data generated by lsetup is expected to be used over a number of time steps.

Arguments cv mem is the cvode memory pointer of type CVodeMem.

convfail is an input flag used to indicate any problem that occurred during the solution
of the nonlinear equation on the current time step for which the linear solver
is being used. This flag can be used to help decide whether the Jacobian
data kept by a cvode linear solver needs to be updated or not. Its possible
values are:
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• CV NO FAILURES: this value is passed to lsetup if either this is the first
call for this step, or the local error test failed on the previous attempt
at this step (but the Newton iteration converged).

• CV FAIL BAD J: this value is passed to lsetup if (a) the previous Newton
corrector iteration did not converge and the linear solver’s setup function
indicated that its Jacobian-related data is not current, or (b) during the
previous Newton corrector iteration, the linear solver’s solve function
failed in a recoverable manner and the linear solver’s setup function
indicated that its Jacobian-related data is not current.

• CV FAIL OTHER: this value is passed to lsetup if during the current in-
ternal step try, the previous Newton iteration failed to converge even
though the linear solver was using current Jacobian-related data.

ypred is the predicted y vector for the current cvode internal step.

fpred is the value of the right-hand side at ypred, f(tn, ypred).

jcurPtr is a pointer to a boolean to be filled in by lsetup. The function should set
*jcurPtr = TRUE if its Jacobian data is current after the call, and should
set *jcurPtr = FALSE if its Jacobian data is not current. If lsetup calls for
re-evaluation of Jacobian data (based on convfail and cvode state data), it
should return *jcurPtr = TRUE unconditionally; otherwise an infinite loop
can result.

vtemp1

vtemp2

vtemp3 are temporary variables of type N Vector provided for use by lsetup.

Return value The lsetup function should return 0 if successful, a positive value for a recoverable
error, and a negative value for an unrecoverable error. On a recoverable error return,
the solver will attempt to recover by reducing the step size.

7.3 Solve function

The type definition of lsolve is

lsolve

Definition int (*lsolve)(CVodeMem cv mem, N Vector b, N Vector weight,

N Vector ycur, N Vector fcur);

Purpose The function lsolve must solve the linear system Mx = b, where M is some approxi-
mation to the Newton matrix, I − γJ , where J = (∂f/∂y)(tn, ycur) (see Eq.(2.5)), and
the right-hand side vector, b, is input. Here γ is available as cv mem->cv gamma.

lsolve is called once per Newton iteration, hence possibly several times per time step.

If there is an lsetup function, this lsolve function should make use of any Jacobian
data that was computed and preprocessed by lsetup, either for direct use, or for use
in a preconditioner.

Arguments cv mem is the cvode memory pointer of type CVodeMem.

b is the right-hand side vector b. The solution is to be returned in the vector b.

weight is a vector that contains the error weights. These are the Wi of Eq.(2.6). This
weight vector is included here to enable the computation of weighted norms
needed to test for the convergence of iterative methods (if any) within the
linear solver.

ycur is a vector that contains the solver’s current approximation to y(tn).

fcur is a vector that contains the current right-hand side, f(tn, ycur).
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Return value The lsolve function should return a positive value for a recoverable error and a neg-
ative value for an unrecoverable error. Success is indicated by a 0 return value. On
a recoverable error return, the solver will attempt to recover, such as by calling the
lsetup function with current arguments.

7.4 Memory deallocation function

The type definition of lfree is

lfree

Definition void (*lfree)(CVodeMem cv mem);

Purpose The function lfree should free up any memory allocated by the linear solver.

Arguments The argument cv mem is the cvode memory pointer of type CVodeMem.

Return value The lfree function has no return value.

Notes This function is called once a problem has been completed and the linear solver is no
longer needed.



Chapter 8

General Use Linear Solver
Components in SUNDIALS

In this chapter, we describe linear solver code components that are included in sundials, but which
are of potential use as generic packages in themselves, either in conjunction with the use of sundials

or separately.
These generic modules in sundials are organized in three families, the dls family, which includes

direct linear solvers appropriate for sequential computations; the sls family, which includes sparse
matrix solvers; and the spils family, which includes scaled preconditioned iterative (Krylov) linear
solvers. The solvers in each family share common data structures and functions.

The dls family contains the following two generic linear solvers:

• The dense package, a linear solver for dense matrices either specified through a matrix type
(defined below) or as simple arrays.

• The band package, a linear solver for banded matrices either specified through a matrix type
(defined below) or as simple arrays.

Note that this family also includes the Blas/Lapack linear solvers (dense and band) available to the
sundials solvers, but these are not discussed here.

The sls family contains a sparse matrix package and interfaces between it and two sparse direct
solver packages:

• The klu package, a linear solver for compressed-sparse-column matrices, [1, 11].

• The superlumt package, a threaded linear solver for compressed-sparse-column matrices, [2,
22, 12].

The spils family contains the following generic linear solvers:

• The spgmr package, a solver for the scaled preconditioned GMRES method.

• The spfgmr package, a solver for the scaled preconditioned Flexible GMRES method.

• The spbcg package, a solver for the scaled preconditioned Bi-CGStab method.

• The sptfqmr package, a solver for the scaled preconditioned TFQMR method.

For reasons related to installation, the names of the files involved in these packages begin with the
prefix sundials . But despite this, each of the dls and spils solvers is in fact generic, in that it is
usable completely independently of sundials.

For the sake of space, the functions for the dense and band modules that work with a matrix
type, and the functions in the spgmr, spfgmr, spbcg, and sptfqmr modules are only summarized
briefly, since they are less likely to be of direct use in connection with a sundials solver. However, the
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functions for dense matrices treated as simple arrays and sparse matrices are fully described, because
we expect that they will be useful in the implementation of preconditioners used with the combination
of one of the sundials solvers and one of the spils linear solvers.

8.1 The DLS modules: DENSE and BAND

The files comprising the dense generic linear solver, and their locations in the sundials srcdir, are
as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h, sundials dense.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c, sundials dense.c, sundials math.c

The files comprising the band generic linear solver are as follows:

• header files (located in srcdir/include/sundials)
sundials direct.h, sundials band.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials direct.c, sundials band.c, sundials math.c

Only two of the preprocessing directives in the header file sundials config.h are relevant to the
dense and band packages by themselves.

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN and SUNMAX,
and the function SUNRabs.

The files listed above for either module can be extracted from the sundials srcdir and compiled
by themselves into a separate library or into a larger user code.

8.1.1 Type DlsMat

The type DlsMat, defined in sundials direct.h is a pointer to a structure defining a generic matrix,
and is used with all linear solvers in the dls family:

typedef struct _DlsMat {

int type;

long int M;

long int N;

long int ldim;

long int mu;

long int ml;

long int s_mu;

realtype *data;

long int ldata;

realtype **cols;

} *DlsMat;



8.1 The DLS modules: DENSE and BAND 117

For the dense module, the relevant fields of this structure are as follows. Note that a dense matrix
of type DlsMat need not be square.

type - SUNDIALS DENSE (=1)

M - number of rows

N - number of columns

ldim - leading dimension (ldim ≥ M)

data - pointer to a contiguous block of realtype variables

ldata - length of the data array (= ldim·N). The (i,j)-th element of a dense matrix A of type DlsMat

(with 0 ≤ i < M and 0 ≤ j < N) is given by the expression (A->data)[0][j*M+i]

cols - array of pointers. cols[j] points to the first element of the j-th column of the matrix in the
array data. The (i,j)-th element of a dense matrix A of type DlsMat (with 0 ≤ i < M and 0 ≤
j < N) is given by the expression (A->cols)[j][i]

For the band module, the relevant fields of this structure are as follows (see Figure 8.1 for a diagram
of the underlying data representation in a banded matrix of type DlsMat). Note that only square
band matrices are allowed.

type - SUNDIALS BAND (=2)

M - number of rows

N - number of columns (N = M)

mu - upper half-bandwidth, 0 ≤ mu < min(M,N)

ml - lower half-bandwidth, 0 ≤ ml < min(M,N)

s mu - storage upper bandwidth, mu ≤ s mu < N. The LU decomposition routine writes the LU
factors into the storage for A. The upper triangular factor U, however, may have an upper
bandwidth as big as min(N-1,mu+ml) because of partial pivoting. The s mu field holds the upper
half-bandwidth allocated for A.

ldim - leading dimension (ldim ≥ s mu)

data - pointer to a contiguous block of realtype variables. The elements of a banded matrix of type
DlsMat are stored columnwise (i.e. columns are stored one on top of the other in memory). Only
elements within the specified half-bandwidths are stored. data is a pointer to ldata contiguous
locations which hold the elements within the band of A.

ldata - length of the data array (= ldim·(s mu+ml+1)

cols - array of pointers. cols[j] is a pointer to the uppermost element within the band in the j-th
column. This pointer may be treated as an array indexed from s mu−mu (to access the uppermost
element within the band in the j-th column) to s mu+ml (to access the lowest element within the
band in the j-th column). Indices from 0 to s mu−mu−1 give access to extra storage elements
required by the LU decomposition function. Finally, cols[j][i-j+s mu] is the (i, j)-th element,
j−mu ≤ i ≤ j+ml.
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A (type BandMat)

size data

N

mu ml smu

data[0]

data[1]

data[j]

data[j+1]

data[N−1]

data[j][smu−mu]

data[j][smu]

data[j][smu+ml]

mu+ml+1

smu−mu

A(j−mu−1,j)

A(j−mu,j)

A(j,j)

A(j+ml,j)

Figure 8.1: Diagram of the storage for a banded matrix of type DlsMat. Here A is an N × N band
matrix of type DlsMat with upper and lower half-bandwidths mu and ml, respectively. The rows and
columns of A are numbered from 0 to N − 1 and the (i, j)-th element of A is denoted A(i,j). The
greyed out areas of the underlying component storage are used by the BandGBTRF and BandGBTRS

routines.
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8.1.2 Accessor macros for the DLS modules

The macros below allow a user to efficiently access individual matrix elements without writing out
explicit data structure references and without knowing too much about the underlying element storage.
The only storage assumption needed is that elements are stored columnwise and that a pointer to the
j-th column of elements can be obtained via the DENSE COL or BAND COL macros. Users should use
these macros whenever possible.

The following two macros are defined by the dense module to provide access to data in the DlsMat
type:

• DENSE ELEM

Usage : DENSE ELEM(A,i,j) = a ij; or a ij = DENSE ELEM(A,i,j);

DENSE ELEM references the (i,j)-th element of the M × N DlsMat A, 0 ≤ i < M , 0 ≤ j < N .

• DENSE COL

Usage : col j = DENSE COL(A,j);

DENSE COL references the j-th column of the M × N DlsMat A, 0 ≤ j < N . The type of the
expression DENSE COL(A,j) is realtype * . After the assignment in the usage above, col j

may be treated as an array indexed from 0 to M − 1. The (i, j)-th element of A is referenced
by col j[i].

The following three macros are defined by the band module to provide access to data in the DlsMat
type:

• BAND ELEM

Usage : BAND ELEM(A,i,j) = a ij; or a ij = BAND ELEM(A,i,j);

BAND ELEM references the (i,j)-th element of the N ×N band matrix A, where 0 ≤ i, j ≤ N −1.
The location (i,j) should further satisfy j−(A->mu) ≤ i ≤ j+(A->ml).

• BAND COL

Usage : col j = BAND COL(A,j);

BAND COL references the diagonal element of the j-th column of the N × N band matrix A, 0 ≤
j ≤ N − 1. The type of the expression BAND COL(A,j) is realtype *. The pointer returned by
the call BAND COL(A,j) can be treated as an array which is indexed from −(A->mu) to (A->ml).

• BAND COL ELEM

Usage : BAND COL ELEM(col j,i,j) = a ij; or a ij = BAND COL ELEM(col j,i,j);

This macro references the (i,j)-th entry of the band matrix A when used in conjunction with
BAND COL to reference the j-th column through col j. The index (i,j) should satisfy j−(A->mu)
≤ i ≤ j+(A->ml).

8.1.3 Functions in the DENSE module

The dense module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on dense matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat dense matrices are available in the dense package. For full
details, see the header files sundials direct.h and sundials dense.h.

• NewDenseMat: allocation of a DlsMat dense matrix;

• DestroyMat: free memory for a DlsMat matrix;
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• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of long int integers for use as pivots with DenseGETRF

and DenseGETRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack dense
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with DenseGETRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• DenseCopy: copy one matrix to another;

• DenseScale: scale a matrix by a scalar;

• DenseGETRF: LU factorization with partial pivoting;

• DenseGETRS: solution of Ax = b using LU factorization (for square matrices A);

• DensePOTRF: Cholesky factorization of a real symmetric positive matrix;

• DensePOTRS: solution of Ax = b using the Cholesky factorization of A;

• DenseGEQRF: QR factorization of an m × n matrix, with m ≥ n;

• DenseORMQR: compute the product w = Qv, with Q calculated using DenseGEQRF;

• DenseMatvec: compute the product y = Ax, for an M by N matrix A;

The following functions for small dense matrices are available in the dense package:

• newDenseMat

newDenseMat(m,n) allocates storage for an m by n dense matrix. It returns a pointer to the newly
allocated storage if successful. If the memory request cannot be satisfied, then newDenseMat

returns NULL. The underlying type of the dense matrix returned is realtype**. If we allocate
a dense matrix realtype** a by a = newDenseMat(m,n), then a[j][i] references the (i,j)-th
element of the matrix a, 0 ≤ i < m, 0 ≤ j < n, and a[j] is a pointer to the first element in
the j-th column of a. The location a[0] contains a pointer to m × n contiguous locations which
contain the elements of a.

• destroyMat

destroyMat(a) frees the dense matrix a allocated by newDenseMat;

• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.
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• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• denseCopy

denseCopy(a,b,m,n) copies the m by n dense matrix a into the m by n dense matrix b;

• denseScale

denseScale(c,a,m,n) scales every element in the m by n dense matrix a by the scalar c;

• denseAddIdentity

denseAddIdentity(a,n) increments the square n by n dense matrix a by the identity matrix
In;

• denseGETRF

denseGETRF(a,m,n,p) factors the m by n dense matrix a, using Gaussian elimination with row
pivoting. It overwrites the elements of a with its LU factors and keeps track of the pivot rows
chosen in the pivot array p.

A successful LU factorization leaves the matrix a and the pivot array p with the following
information:

1. p[k] contains the row number of the pivot element chosen at the beginning of elimination
step k, k = 0, 1, ...,n−1.

2. If the unique LU factorization of a is given by Pa = LU , where P is a permutation matrix,
L is an m by n lower trapezoidal matrix with all diagonal elements equal to 1, and U is an
n by n upper triangular matrix, then the upper triangular part of a (including its diagonal)
contains U and the strictly lower trapezoidal part of a contains the multipliers, I −L. If a
is square, L is a unit lower triangular matrix.

denseGETRF returns 0 if successful. Otherwise it encountered a zero diagonal element during
the factorization, indicating that the matrix a does not have full column rank. In this case
it returns the column index (numbered from one) at which it encountered the zero.

• denseGETRS

denseGETRS(a,n,p,b) solves the n by n linear system ax = b. It assumes that a (of size
n × n) has been LU-factored and the pivot array p has been set by a successful call to
denseGETRF(a,n,n,p). The solution x is written into the b array.

• densePOTRF

densePOTRF(a,m) calculates the Cholesky decomposition of the m by m dense matrix a, assumed
to be symmetric positive definite. Only the lower triangle of a is accessed and overwritten with
the Cholesky factor.

• densePOTRS

densePOTRS(a,m,b) solves the m by m linear system ax = b. It assumes that the Cholesky
factorization of a has been calculated in the lower triangular part of a by a successful call to
densePOTRF(a,m).

• denseGEQRF

denseGEQRF(a,m,n,beta,wrk) calculates the QR decomposition of the m by n matrix a (m ≥
n) using Householder reflections. On exit, the elements on and above the diagonal of a contain
the n by n upper triangular matrix R; the elements below the diagonal, with the array beta,
represent the orthogonal matrix Q as a product of elementary reflectors. The real array wrk, of
length m, must be provided as temporary workspace.
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• denseORMQR

denseORMQR(a,m,n,beta,v,w,wrk) calculates the product w = Qv for a given vector v of length
n, where the orthogonal matrix Q is encoded in the m by n matrix a and the vector beta of
length n, after a successful call to denseGEQRF(a,m,n,beta,wrk). The real array wrk, of length
m, must be provided as temporary workspace.

• denseMatvec

denseMatvec(a,x,y,m,n) calculates the product y = ax for a given vector x of length n, and m

by n matrix a.

8.1.4 Functions in the BAND module

The band module defines two sets of functions with corresponding names. The first set contains
functions (with names starting with a capital letter) that act on band matrices of type DlsMat. The
second set contains functions (with names starting with a lower case letter) that act on matrices
represented as simple arrays.

The following functions for DlsMat banded matrices are available in the band package. For full
details, see the header files sundials direct.h and sundials band.h.

• NewBandMat: allocation of a DlsMat band matrix;

• DestroyMat: free memory for a DlsMat matrix;

• PrintMat: print a DlsMat matrix to standard output.

• NewLintArray: allocation of an array of int integers for use as pivots with BandGBRF and
BandGBRS;

• NewIntArray: allocation of an array of int integers for use as pivots with the Lapack band
solvers;

• NewRealArray: allocation of an array of realtype for use as right-hand side with BandGBRS;

• DestroyArray: free memory for an array;

• SetToZero: load a matrix with zeros;

• AddIdentity: increment a square matrix by the identity matrix;

• BandCopy: copy one matrix to another;

• BandScale: scale a matrix by a scalar;

• BandGBTRF: LU factorization with partial pivoting;

• BandGBTRS: solution of Ax = b using LU factorization;

• BandMatvec: compute the product y = Ax, for a square band matrix A;

The following functions for small band matrices are available in the band package:

• newBandMat

newBandMat(n, smu, ml) allocates storage for an n by n band matrix with lower half-bandwidth
ml.

• destroyMat

destroyMat(a) frees the band matrix a allocated by newBandMat;
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• newLintArray

newLintArray(n) allocates an array of n integers, all long int. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• newIntArray

newIntArray(n) allocates an array of n integers, all int. It returns a pointer to the first element
in the array if successful. It returns NULL if the memory request could not be satisfied.

• newRealArray

newRealArray(n) allocates an array of n realtype values. It returns a pointer to the first
element in the array if successful. It returns NULL if the memory request could not be satisfied.

• destroyArray

destroyArray(p) frees the array p allocated by newLintArray, newIntArray, or newRealArray;

• bandCopy

bandCopy(a,b,n,a smu, b smu,copymu, copyml) copies the n by n band matrix a into the n

by n band matrix b;

• bandScale

bandScale(c,a,n,mu,ml,smu) scales every element in the n by n band matrix a by c;

• bandAddIdentity

bandAddIdentity(a,n,smu) increments the n by n band matrix a by the identity matrix;

• bandGETRF

bandGETRF(a,n,mu,ml,smu,p) factors the n by n band matrix a, using Gaussian elimination
with row pivoting. It overwrites the elements of a with its LU factors and keeps track of the
pivot rows chosen in the pivot array p.

• bandGETRS

bandGETRS(a,n,smu,ml,p,b) solves the n by n linear system ax = b. It assumes that a (of
size n × n) has been LU-factored and the pivot array p has been set by a successful call to
bandGETRF(a,n,mu,ml,smu,p). The solution x is written into the b array.

• bandMatvec

bandMatvec(a,x,y,n,mu,ml,smu) calculates the product y = ax for a given vector x of length
n, and n by n band matrix a.

8.2 The SLS module

sundials provides a compressed-sparse-column matrix type and sparse matrix support functions. In
addition, sundials provides interfaces to the publically available KLU and SuperLU MT sparse direct
solver packages. The files comprising the sls matrix module, used in the klu and superlumt linear
solver packages, and their locations in the sundials srcdir, are as follows:

• header files (located in srcdir/include/sundials)
sundials sparse.h, sundials klu impl.h,
sundials superlumt impl.h, sundials types.h,
sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials sparse.c, sundials math.c
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Only two of the preprocessing directives in the header file sundials config.h are relevant to the sls

package by itself:

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions: #define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN and SUNMAX,
and the function SUNRabs.

8.2.1 Type SlsMat

The type SlsMat, defined in sundials sparse.h is a pointer to a structure defining a generic
compressed-sparse-column matrix, and is used with all linear solvers in the sls family:

typedef struct _SlsMat {

int M;

int N;

int NNZ;

realtype *data;

int *rowvals;

int *colptrs;

} *SlsMat;

The fields of this structure are as follows (see Figure 8.2 for a diagram of the underlying compressed-
sparse-column representation in a sparse matrix of type SlsMat). Note that a sparse matrix of type
SlsMat need not be square.

M - number of rows

N - number of columns

NNZ - maximum number of nonzero entries in the matrix (allocated length of data and rowvals

arrays)

data - pointer to a contiguous block of realtype variables (of length NNZ), containing the values of
the nonzero entries in the matrix

rowvals - pointer to a contiguous block of int variables (of length NNZ), containing the row indices
of each nonzero entry held in data

colptrs - pointer to a contiguous block of int variables (of length N+1). Each entry provides the
index of the first column entry into the data and rowvals arrays, e.g. if colptr[3]=7, then
the first nonzero entry in the fourth column of the matrix is located in data[7], and is located
in row rowvals[7] of the matrix. The last entry contains the total number of nonzero values
in the matrix and hence points one past the end of the active data in the data and rowvals

arrays.

For example, the 5 × 4 matrix












0 3 1 0
3 0 0 2
0 7 0 0
1 0 0 9
0 0 0 5













could be stored in a SlsMat structure as either
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M = 5;

N = 4;

NNZ = 8;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0};

rowvals = {1, 3, 0, 2, 0, 1, 3, 4};

colptrs = {0, 2, 4, 5, 8};

or

M = 5;

N = 4;

NNZ = 10;

data = {3.0, 1.0, 3.0, 7.0, 1.0, 2.0, 9.0, 5.0, *, *};

rowvals = {1, 3, 0, 2, 0, 1, 3, 4, *, *};

colptrs = {0, 2, 4, 5, 8};

where the first has no unused space, and the second has additional storage (the entries marked with *

may contain any values). Note in both cases that the final value in colptrs is 8. The work associated
with operations on the sparse matrix is proportional to this value and so one should use the best
understanding of the number of nonzeroes here.

8.2.2 Functions in the SLS module

The sls module defines functions that act on sparse matrices of type SlsMat. For full details, see the
header file sundials sparse.h.

• NewSparseMat

NewSparseMat(M, N, NNZ) allocates storage for an M by N sparse matrix, with storage for up
to NNZ nonzero entries.

• SlsConvertDls

SlsConvertDls(A) converts a dense or band matrix A of type DlsMat into a new sparse matrix
of type SlsMat by retaining only the nonzero values of the matrix A.

• DestroySparseMat

DestroySparseMat(A) frees the memory for a sparse matrix A allocated by either NewSparseMat
or SlsConvertDls.

• SlsSetToZero(A) zeros out the SlsMat matrix A. The storage for A is left unchanged.

• CopySparseMat

CopySparseMat(A, B) copies the SlsMat A into the SlsMat B. It is assumed that the matrices
have the same row/column dimensions. If B has insufficient storage to hold all the nonzero
entries of A, the data and row index arrays in B are reallocated to match those in A.

• ScaleSparseMat

ScaleSparseMat(c, A) scales every element in the SlsMat A by the realtype scalar c.

• AddIdentitySparseMat

AddIdentitySparseMat(A) increments the SlsMat A by the identity matrix. If A is not square,
only the existing diagonal values are incremented. Resizes the data and rowvals arrays of A to
allow for new nonzero entries on the diagonal.

• SlsAddMat

SlsAddMat(A, B) adds two SlsMat matrices A and B, placing the result back in A. Resizes the
data and rowvals arrays of A upon completion to exactly match the nonzero storage for the
result. Upon successful completion, the return value is zero; otherwise -1 is returned.
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colptrs

M

rowvals data

NNZNA (type SlsMat)

k

nz

0

j

A(rowvals[nz−1],N−1)

A(rowvals[k],N−1)

A(rowvals[j],1)

A(rowvals[1],0)

A(rowvals[0],0)

column 0

column N−1

unused
storage

Figure 8.2: Diagram of the storage for a compressed-sparse-column matrix of type SlsMat. Here A

is an M × N sparse matrix of type SlsMat with storage for up to NNZ nonzero entries (the allocated
length of both data and rowvals). The entries in rowvals may assume values from 0 to M − 1,
corresponding to the row index (zero-based) of each nonzero value. The entries in data contain the
values of the nonzero entries, with the row i, column j entry of A (again, zero-based) denoted as
A(i,j). The colptrs array contains N + 1 entries; the first N denote the starting index of each
column within the rowvals and data arrays, while the final entry points one past the final nonzero
entry. Here, although NNZ values are allocated, only nz are actually filled in; the greyed-out portions
of data and rowvals indicate extra allocated space.
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• ReallocSparseMat

ReallocSparseMat(A) eliminates unused storage in the SlsMat A by resizing the internal data
and rowvals arrays to contain exactly colptrs[N] values.

• SlsMatvec

SlsMatvec(A, x, y) computes the sparse matrix-vector product, y = Ax. If the SlsMat A is a
sparse matrix of dimension M × N , then it is assumed that x is a realtype array of length N ,
and y is a realtype array of length M . Upon successful completion, the return value is zero;
otherwise -1 is returned.

• PrintSparseMat

PrintSparseMat(A) Prints the SlsMat matrix A to standard output.

8.2.3 The KLU solver

klu is a sparse matrix factorization and solver library written by Tim Davis [1, 11]. klu has a
symbolic factorization routine that computes the permutation of the linear system matrix to block
triangular form and the permutations that will pre-order the diagonal blocks (the only ones that need
to be factored) to reduce fill-in (using AMD, COLAMD, CHOLAMD, natural, or an ordering given
by the user). Note that SUNDIALS uses the COLAMD ordering by default with klu.

klu breaks the factorization into two separate parts. The first is a symbolic factorization and the
second is a numeric factorization that returns the factored matrix along with final pivot information.
klu also has a refactor routine that can be called instead of the numeric factorization. This routine
will reuse the pivot information. This routine also returns diagnostic information that a user can
examine to determine if numerical stability is being lost and a full numerical factorization should be
done instead of the refactor.

The klu interface in sundials will perform the symbolic factorization once. It then calls the
numerical factorization once and will call the refactor routine until estimates of the numerical condi-
tioning suggest a new factorization should be completed. The klu interface also has a ReInit routine
that can be used to force a full refactorization at the next solver setup call.

In order to use the sundials interface to klu, it is assumed that klu has been installed on the
system prior to installation of sundials, and that sundials has been configured appropriately to link
with klu (see Appendix A for details).

Designed for serial calculations only, klu is supported for calculations employing sundials’ serial
or shared-memory parallel nvector modules (see Sections 6.1, 6.3 and 6.4 for details).

8.2.4 The SUPERLUMT solver

superlumt is a threaded sparse matrix factorization and solver library written by X. Sherry Li
[2, 22, 12]. The package performs matrix factorization using threads to enhance efficiency in shared
memory parallel environments. It should be noted that threads are only used in the factorization step.

In order to use the sundials interface to superlumt, it is assumed that superlumt has been
installed on the system prior to installation of sundials, and that sundials has been configured
appropriately to link with superlumt (see Appendix A for details).

Designed for serial and threaded calculations only, superlumt is supported for calculations em-
ploying sundials’ serial or shared-memory parallel nvector modules (see Sections 6.1, 6.3 and 6.4
for details).

8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and
SPTFQMR

The spils modules contain implementations of some of the most commonly use scaled preconditioned
Krylov solvers. A linear solver module from the spils family can be used in conjunction with any
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nvector implementation library.

8.3.1 The SPGMR module

The spgmr package, in the files sundials spgmr.h and sundials spgmr.c, includes an implemen-
tation of the scaled preconditioned GMRES method. A separate code module, implemented in
sundials iterative.(h,c), contains auxiliary functions that support spgmr, as well as the other
Krylov solvers in sundials (spfgmr, spbcg, and sptfqmr). For full details, including usage instruc-
tions, see the header files sundials spgmr.h and sundials iterative.h.

The files comprising the spgmr generic linear solver, and their locations in the sundials srcdir,
are as follows:

• header files (located in srcdir/include/sundials)
sundials spgmr.h, sundials iterative.h, sundials nvector.h,
sundials types.h, sundials math.h, sundials config.h

• source files (located in srcdir/src/sundials)
sundials spgmr.c, sundials iterative.c, sundials nvector.c

Only two of the preprocessing directives in the header file sundials config.h are required to use the
spgmr package by itself:

• (required) definition of the precision of the sundials type realtype. One of the following lines
must be present:
#define SUNDIALS DOUBLE PRECISION 1

#define SUNDIALS SINGLE PRECISION 1

#define SUNDIALS EXTENDED PRECISION 1

• (optional) use of generic math functions:
#define SUNDIALS USE GENERIC MATH 1

The sundials types.h header file defines the sundials realtype and booleantype types and the
macro RCONST, while the sundials math.h header file is needed for the macros SUNMIN, SUNMAX, and
SUNSQR, and the functions SUNRabs and SUNRsqrt.

The generic nvector files, sundials nvector.(h,c) are needed for the definition of the generic
N Vector type and functions. The nvector functions used by the spgmr module are: N VDotProd,
N VLinearSum, N VScale, N VProd, N VDiv, N VConst, N VClone, N VCloneVectorArray, N VDestroy,
and N VDestroyVectorArray.

The nine files listed above can be extracted from the sundials srcdir and compiled by themselves
into an spgmr library or into a larger user code.

The following functions are available in the spgmr package:

• SpgmrMalloc: allocation of memory for SpgmrSolve;

• SpgmrSolve: solution of Ax = b by the spgmr method;

• SpgmrFree: free memory allocated by SpgmrMalloc.

The following functions are available in the support package sundials iterative.(h,c):

• ModifiedGS: performs modified Gram-Schmidt procedure;

• ClassicalGS: performs classical Gram-Schmidt procedure;

• QRfact: performs QR factorization of Hessenberg matrix;

• QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact.



8.3 The SPILS modules: SPGMR, SPFGMR, SPBCG, and SPTFQMR 129

8.3.2 The SPFGMR module

The spfgmr package, in the files sundials spfgmr.h and sundials spfgmr.c, includes an imple-
mentation of the scaled preconditioned Flexible GMRES method. For full details, including usage
instructions, see the file sundials spfgmr.h.

The files needed to use the spfgmr module by itself are the same as for the spgmr module, but
with sundials spfgmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spfgmr package:

• SpfgmrMalloc: allocation of memory for SpfgmrSolve;

• SpfgmrSolve: solution of Ax = b by the spfgmr method;

• SpfgmrFree: free memory allocated by SpfgmrMalloc.

8.3.3 The SPBCG module

The spbcg package, in the files sundials spbcgs.h and sundials spbcgs.c, includes an implemen-
tation of the scaled preconditioned Bi-CGStab method. For full details, including usage instructions,
see the file sundials spbcgs.h.

The files needed to use the spbcg module by itself are the same as for the spgmr module, but
with sundials spbcgs.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the spbcg package:

• SpbcgMalloc: allocation of memory for SpbcgSolve;

• SpbcgSolve: solution of Ax = b by the spbcg method;

• SpbcgFree: free memory allocated by SpbcgMalloc.

8.3.4 The SPTFQMR module

The sptfqmr package, in the files sundials sptfqmr.h and sundials sptfqmr.c, includes an imple-
mentation of the scaled preconditioned TFQMR method. For full details, including usage instructions,
see the file sundials sptfqmr.h.

The files needed to use the sptfqmr module by itself are the same as for the spgmr module, but
with sundials sptfqmr.(h,c) in place of sundials spgmr.(h,c).

The following functions are available in the sptfqmr package:

• SptfqmrMalloc: allocation of memory for SptfqmrSolve;

• SptfqmrSolve: solution of Ax = b by the sptfqmr method;

• SptfqmrFree: free memory allocated by SptfqmrMalloc.





Appendix A

SUNDIALS Package Installation
Procedure

The installation of any sundials package is accomplished by installing the sundials suite as a whole,
according to the instructions that follow. The same procedure applies whether or not the downloaded
file contains one or all solvers in sundials.

The sundials suite (or individual solvers) are distributed as compressed archives (.tar.gz).
The name of the distribution archive is of the form solver-x.y.z.tar.gz, where solver is one of:
sundials, cvode, cvodes, arkode, ida, idas, or kinsol, and x.y.z represents the version number
(of the sundials suite or of the individual solver) . To begin the installation, first uncompress and
expand the sources, by issuing

% tar xzf solver-x.y.z.tar.gz

This will extract source files under a directory solver-x.y.z.
Starting with version 2.6.0 of sundials, CMake is the only supported method of installation.

The explanations on the installation procedure begins with a few common observations:

• The remainder of this chapter will follow these conventions:

srcdir is the directory solver-x.y.z created above; i.e., the directory containing the sundials

sources.

builddir is the (temporary) directory under which sundials is built.

instdir is the directory under which the sundials exported header files and libraries will be
installed. Typically, header files are exported under a directory instdir/include while
libraries are installed under instdir/lib, with instdir specified at configuration time.

• For sundials CMake-based installation, in-source builds are prohibited; in other words, the
build directory builddir can not be the same as srcdir and such an attempt will lead to an error.
This prevents “polluting” the source tree and allows efficient builds for different configurations
and/or options.

• The installation directory instdir can not be the same as the source directory srcdir. !

• By default, only the libraries and header files are exported to the installation directory instdir.
If enabled by the user (with the appropriate toggle for CMake), the examples distributed with
sundials will be built together with the solver libraries but the installation step will result
in exporting (by default in a subdirectory of the installation directory) the example sources
and sample outputs together with automatically generated configuration files that reference the
installed sundials headers and libraries. As such, these configuration files for the sundials ex-
amples can be used as ”templates” for your own problems. CMake installs CMakeLists.txt files
and also (as an option available only under Unix/Linux) Makefile files. Note this installation
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approach also allows the option of building the sundials examples without having to install
them. (This can be used as a sanity check for the freshly built libraries.)

• Even if generation of shared libraries is enabled, only static libraries are created for the FCMIX
modules. (Because of the use of fixed names for the Fortran user-provided subroutines, FCMIX
shared libraries would result in ”undefined symbol” errors at link time.)

A.1 CMake-based installation

CMake-based installation provides a platform-independent build system. CMake can generate Unix
and Linux Makefiles, as well as KDevelop, Visual Studio, and (Apple) XCode project files from the
same configuration file. In addition, CMake also provides a GUI front end and which allows an
interactive build and installation process.

The sundials build process requires CMake version 2.8.1 or higher and a working compiler. On
Unix-like operating systems, it also requires Make (and curses, including its development libraries, for
the GUI front end to CMake, ccmake), while on Windows it requires Visual Studio. While many Linux
distributions offer CMake, the version included is probably out of date. Many new CMake features
have been added recently, and you should download the latest version from http://www.cmake.org.
Build instructions for CMake (only necessary for Unix-like systems) can be found on the CMake
website. Once CMake is installed, Linux/Unix users will be able to use ccmake, while Windows users
will be able to use CMakeSetup.

As previously noted, when using CMake to configure, build and install sundials, it is always
required to use a separate build directory. While in-source builds are possible, they are explicitly
prohibited by the sundials CMake scripts (one of the reasons being that, unlike autotools, CMake
does not provide a make distclean procedure and it is therefore difficult to clean-up the source tree
after an in-source build). By ensuring a separate build directory, it is an easy task for the user to
clean-up all traces of the build by simply removing the build directory. CMake does generate a make

clean which will remove files generated by the compiler and linker.

A.1.1 Configuring, building, and installing on Unix-like systems

The default CMake configuration will build all included solvers and associated examples and will build
static and shared libraries. The installdir defaults to /usr/local and can be changed by setting the
CMAKE INSTALL PREFIX variable. Support for FORTRAN and all other options are disabled.

CMake can be used from the command line with the cmake command, or from a curses-based
GUI by using the ccmake command. Examples for using both methods will be presented. For the
examples shown it is assumed that there is a top level sundials directory with appropriate source,
build and install directories:

% mkdir (...)sundials/instdir

% mkdir (...)sundials/builddir

% cd (...)sundials/builddir

Building with the GUI

Using CMake with the GUI follows this general process:

• Select and modify values, run configure (c key)

• New values are denoted with an asterisk

• To set a variable, move the cursor to the variable and press enter

– If it is a boolean (ON/OFF) it will toggle the value

– If it is string or file, it will allow editing of the string
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– For file and directories, the <tab> key can be used to complete

• Repeat until all values are set as desired and the generate option is available (g key)

• Some variables (advanced variables) are not visible right away

• To see advanced variables, toggle to advanced mode (t key)

• To search for a variable press / key, and to repeat the search, press the n key

To build the default configuration using the GUI, from the builddir enter the ccmake command
and point to the srcdir:

% ccmake ../srcdir

The default configuration screen is shown in Figure A.1.

Figure A.1: Default configuration screen. Note: Initial screen is empty. To get this default config-
uration, press ’c’ repeatedly (accepting default values denoted with asterisk) until the ’g’ option is
available.

The default instdir for both sundials and corresponding examples can be changed by setting the
CMAKE INSTALL PREFIX and the EXAMPLES INSTALL PATH as shown in figure A.2.

Pressing the (g key) will generate makefiles including all dependencies and all rules to build sun-

dials on this system. Back at the command prompt, you can now run:

% make

To install sundials in the installation directory specified in the configuration, simply run:

% make install
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Figure A.2: Changing the instdir for sundials and corresponding examples

Building from the command line

Using CMake from the command line is simply a matter of specifying CMake variable settings with
the cmake command. The following will build the default configuration:

% cmake -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> ../srcdir

% make

% make install

A.1.2 Configuration options (Unix/Linux)

A complete list of all available options for a CMake-based sundials configuration is provide below.
Note that the default values shown are for a typical configuration on a Linux system and are provided
as illustration only.

BUILD ARKODE - Build the ARKODE library
Default: ON

BUILD CVODE - Build the CVODE library
Default: ON

BUILD CVODES - Build the CVODES library
Default: ON
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BUILD IDA - Build the IDA library
Default: ON

BUILD IDAS - Build the IDAS library
Default: ON

BUILD KINSOL - Build the KINSOL library
Default: ON

BUILD SHARED LIBS - Build shared libraries
Default: OFF

BUILD STATIC LIBS - Build static libraries
Default: ON

CMAKE BUILD TYPE - Choose the type of build, options are: None (CMAKE C FLAGS used) Debug
Release RelWithDebInfo MinSizeRel
Default:

CMAKE C COMPILER - C compiler
Default: /usr/bin/cc

CMAKE C FLAGS - Flags for C compiler
Default:

CMAKE C FLAGS DEBUG - Flags used by the compiler during debug builds
Default: -g

CMAKE C FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default: -Os -DNDEBUG

CMAKE C FLAGS RELEASE - Flags used by the compiler during release builds
Default: -O3 -DNDEBUG

CMAKE Fortran COMPILER - Fortran compiler
Default: /usr/bin/gfortran
Note: Fortran support (and all related options) are triggered only if either Fortran-C support is
enabled (FCMIX ENABLE is ON) or Blas/Lapack support is enabled (LAPACK ENABLE is ON).

CMAKE Fortran FLAGS - Flags for Fortran compiler
Default:

CMAKE Fortran FLAGS DEBUG - Flags used by the compiler during debug builds
Default:

CMAKE Fortran FLAGS MINSIZEREL - Flags used by the compiler during release minsize builds
Default:

CMAKE Fortran FLAGS RELEASE - Flags used by the compiler during release builds
Default:

CMAKE INSTALL PREFIX - Install path prefix, prepended onto install directories
Default: /usr/local
Note: The user must have write access to the location specified through this option. Exported
sundials header files and libraries will be installed under subdirectories include and lib of
CMAKE INSTALL PREFIX, respectively.

EXAMPLES ENABLE - Build the sundials examples
Default: ON
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EXAMPLES INSTALL - Install example files
Default: ON
Note: This option is triggered only if building example programs is enabled (EXAMPLES ENABLE

ON). If the user requires installation of example programs then the sources and sample output
files for all sundials modules that are currently enabled will be exported to the directory
specified by EXAMPLES INSTALL PATH. A CMake configuration script will also be automatically
generated and exported to the same directory. Additionally, if the configuration is done under
a Unix-like system, makefiles for the compilation of the example programs (using the installed
sundials libraries) will be automatically generated and exported to the directory specified by
EXAMPLES INSTALL PATH.

EXAMPLES INSTALL PATH - Output directory for installing example files
Default: /usr/local/examples
Note: The actual default value for this option will an examples subdirectory created under
CMAKE INSTALL PREFIX.

FCMIX ENABLE - Enable Fortran-C support
Default: OFF

KLU ENABLE - Enable KLU support
Default: OFF

LAPACK ENABLE - Enable Lapack support
Default: OFF
Note: Setting this option to ON will trigger the two additional options see below.

LAPACK LIBRARIES - Lapack (and Blas) libraries
Default: /usr/lib/liblapack.so;/usr/lib/libblas.so
Note: CMake will search for these libraries in your LD LIBRARY PATH prior to searching default
system paths.

MPI ENABLE - Enable MPI support
Default: OFF
Note: Setting this option to ON will trigger several additional options related to MPI.

MPI MPICC - mpicc program
Default:

MPI RUN COMMAND - Specify run command for MPI
Default: mpirun
Note: This can either be set to mpirun for OpenMPI or srun if jobs are managed by SLURM -
Simple Linux Utility for Resource Management as exists on LLNL’s high performance computing
clusters.

MPI MPIF77 - mpif77 program
Default:
Note: This option is triggered only if using MPI compiler scripts (MPI USE MPISCRIPTS is ON)
and Fortran-C support is enabled (FCMIx ENABLE is ON).

OPENMP ENABLE - Enable OpenMP support
Default: OFF
Turn on support for the OpenMP based nvector.

PTHREAD ENABLE - Enable Pthreads support
Default: OFF
Turn on support for the Pthreads based nvector.

SUNDIALS PRECISION - Precision used in sundials, options are: double, single or extended
Default: double
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SUPERLUMT ENABLE - Enable SUPERLU MT support
Default: OFF

USE GENERIC MATH - Use generic (stdc) math libraries
Default: ON

A.1.3 Configuration examples

The following examples will help demonstrate usage of the CMake configure options.
To configure sundials using the default C and Fortran compilers, and default mpicc and mpif77

parallel compilers, enable compilation of examples, and install libraries, headers, and example sources
under subdirectories of /home/myname/sundials/, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> /home/myname/sundials/srcdir

%

% make install

%

To disable installation of the examples, use:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DMPI_ENABLE=ON \

> -DFCMIX_ENABLE=ON \

> -DEXAMPLES_INSTALL=OFF \

> /home/myname/sundials/srcdir

%

% make install

%

A.1.4 Working with external Libraries

The sundials Suite contains many options to enable implementation flexibility when developing
solutions. The following are some notes addressing specific configurations when using the supported
third party libraries.

Building with LAPACK and BLAS

To enable LAPACK and BLAS libraries, set the LAPACK ENABLE option to ON. If the directory contain-
ing the LAPACK and BLAS libraries is in the LD LIBRARY PATH environment variable, CMake will
set the LAPACK LIBRARIES variable accordingly, otherwise CMake will attemp to find the LAPACK
and BLAS libraries in standard system locations. To explicitly tell CMake what libraries to use, the
LAPACK LIBRARIES varible can be set to the desired libraries. Example:

% cmake \

> -DCMAKE_INSTALL_PREFIX=/home/myname/sundials/instdir \

> -DEXAMPLES_INSTALL_PATH=/home/myname/sundials/instdir/examples \

> -DLAPACK_LIBRARIES=/mypath/lib/liblapack.so;/mypath/lib/libblas.so \

> /home/myname/sundials/srcdir

%

% make install

%
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Building with KLU

The KLU libraries are part of SuiteSparse, a suite of sparse matrix software, available from the Texas
A&M University website: http://faculty.cse.tamu.edu/davis/suitesparse.html. sundials has
been tested with SuiteSparse version 4.2.1. To enable KLU, set KLU ENABLE to ON, set KLU INCLUDE DIR

to the include path of the KLU installation and set KLU LIBRARY DIR to the lib path of the KLU
installation. The CMake configure will result in populating the following variables: AMD LIBRARY,
AMD LIBRARY DIR, BTF LIBRARY, BTF LIBRARY DIR, COLAMD LIBRARY, COLAMD LIBRARY DIR, and
KLU LIBRARY

Building with SuperLU MT

The SuperLU MT libraries are available for download from the Lawrence Berkeley National Labo-
ratory website: http://crd-legacy.lbl.gov/∼xiaoye/SuperLU/#superlu mt. sundials has been
tested with SuperLU MT version 2.4. To enable SuperLU MT, set SUPERLUMT ENABLE to ON, set
SUPERLUMT INCLUDE DIR to the SRC path of the SuperLU MT installation, and set the variable
SUPERLUMT LIBRARY DIR to the lib path of the SuperLU MT installation. At the same time, the
variable SUPERLUMT THREAD TYPE must be set to either Pthread or OpenMP.
Do not mix thread types when building sundials solvers. If threading is enabled for sundials by
having either OPENMP ENABLE or PTHREAD ENABLE set to ON then SuperLU MT should be set to use
the same threading type.!

A.2 Building and Running Examples

Each of the sundials solvers is distributed with a set of examples demonstrating basic usage. To
build and install the examples, set both EXAMPLES ENABLE and EXAMPLES INSTALL to ON. Specify the
installation path for the examples with the variable EXAMPLES INSTALL PATH. CMake will generate
CMakeLists.txt configuration files (and Makefile files if on Linux/Unix) that reference the installed
sundials headers and libraries.

Either the CMakeLists.txt file or the traditional Makefile may be used to build the examples as
well as serve as a template for creating user developed solutions. To use the supplied Makefile simply
run make to compile and generate the executables. To use CMake from within the installed example
directory, run cmake (or ccmake to use the GUI) followed by make to compile the example code.
Note that if CMake is used, it will overwrite the traditional Makefile with a new CMake-generated
Makefile. The resulting output from running the examples can be compared with example output
bundled in the sundials distribution.
NOTE: There will potentially be differences in the output due to machine architecture, compiler
versions, use of third party libraries etc.!

A.3 Configuring, building, and installing on Windows

CMake can also be used to build sundials on Windows. To build sundials for use with Visual
Studio the following steps should be performed:

1. Unzip the downloaded tar file(s) into a directory. This will be the srcdir

2. Create a separate builddir

3. Open a Visual Studio Command Prompt and cd to builddir

4. Run cmake-gui ../srcdir

(a) Hit Configure

(b) Check/Uncheck solvers to be built

(c) Change CMAKE INSTALL PREFIX to instdir
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(d) Set other options as desired

(e) Hit Generate

5. Back in the VS Command Window:

(a) Run msbuild ALL BUILD.vcxproj

(b) Run msbuild INSTALL.vcxproj

The resulting libraries will be in the instdir. The sundials project can also now be opened in Visual
Studio. Double click on the ALL BUILD.vcxproj file to open the project. Build the whole solution to
create the sundials libraries. To use the sundials libraries in your own projects, you must set the
include directories for your project, add the sundials libraries to your project solution, and set the
sundials libraries as dependencies for your project.

A.4 Installed libraries and exported header files

Using the CMake sundials build system, the command

% make install

will install the libraries under libdir and the public header files under includedir. The values for these
directories are instdir/lib and instdir/include, respectively. The location can be changed by setting
the CMake variable CMAKE INSTALL PREFIX. Although all installed libraries reside under libdir/lib,
the public header files are further organized into subdirectories under includedir/include.

The installed libraries and exported header files are listed for reference in Tables A.1 and A.2.
The file extension .lib is typically .so for shared libraries and .a for static libraries. Note that, in the
Tables, names are relative to libdir for libraries and to includedir for header files.

A typical user program need not explicitly include any of the shared sundials header files from
under the includedir/include/sundials directory since they are explicitly included by the appropriate
solver header files (e.g., cvode dense.h includes sundials dense.h). However, it is both legal and
safe to do so, and would be useful, for example, if the functions declared in sundials dense.h are to
be used in building a preconditioner.
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Table A.1: sundials libraries and header files

shared Libraries n/a
Header files sundials/sundials config.h sundials/sundials types.h

sundials/sundials math.h
sundials/sundials nvector.h sundials/sundials fnvector.h
sundials/sundials direct.h sundials/sundials lapack.h
sundials/sundials dense.h sundials/sundials band.h
sundials/sundials sparse.h
sundials/sundials iterative.h sundials/sundials spgmr.h
sundials/sundials spbcgs.h sundials/sundials sptfqmr.h
sundials/sundials pcg.h sundials/sundials spfgmr.h

nvector serial Libraries libsundials nvecserial.lib libsundials fnvecserial.a
Header files nvector/nvector serial.h

nvector parallel Libraries libsundials nvecparallel.lib libsundials fnvecparallel.a
Header files nvector/nvector parallel.h

nvector openmp Libraries libsundials nvecopenmp.lib libsundials fnvecopenmp.a
Header files nvector/nvector openmp.h

nvector pthreads Libraries libsundials nvecpthreads.lib libsundials fnvecpthreads.a
Header files nvector/nvector pthreads.h

cvode Libraries libsundials cvode.lib libsundials fcvode.a
Header files cvode/cvode.h cvode/cvode impl.h

cvode/cvode direct.h cvode/cvode lapack.h
cvode/cvode dense.h cvode/cvode band.h
cvode/cvode diag.h
cvode/cvode sparse.h cvode/cvode klu.h
cvode/cvode superlumt.h
cvode/cvode spils.h cvode/cvode spgmr.h
cvode/cvode sptfqmr.h cvode/cvode spbcgs.h
cvode/cvode bandpre.h cvode/cvode bbdpre.h

cvodes Libraries libsundials cvodes.lib
Header files cvodes/cvodes.h cvodes/cvodes impl.h

cvodes/cvodes direct.h cvodes/cvodes lapack.h
cvodes/cvodes dense.h cvodes/cvodes band.h
cvodes/cvodes diag.h
cvodes/cvodes sparse.h cvodes/cvodes klu.h
cvodes/cvodes superlumt.h
cvodes/cvodes spils.h cvodes/cvodes spgmr.h
cvodes/cvodes sptfqmr.h cvodes/cvodes spbcgs.h
cvodes/cvodes bandpre.h cvodes/cvodes bbdpre.h

arkode Libraries libsundials arkode.lib libsundials farkode.a
Header files arkode/arkode.h arkode/arkode impl.h

arkode/arkode direct.h arkode/arkode lapack.h
arkode/arkode dense.h arkode/arkode band.h
arkode/arkode sparse.h arkode/arkode klu.h
arkode/arkode superlumt.h
arkode/arkode spils.h arkode/arkode spgmr.h
arkode/arkode sptfqmr.h arkode/arkode spbcgs.h
arkode/arkode pcg.h arkode/arkode spfgmr.h
arkode/arkode bandpre.h arkode/arkode bbdpre.h
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Table A.2: sundials libraries and header files (cont.)

ida Libraries libsundials ida.lib libsundials fida.a
Header files ida/ida.h ida/ida impl.h

ida/ida direct.h ida/ida lapack.h
ida/ida dense.h ida/ida band.h
ida/ida sparse.h ida/ida klu.h
ida/ida superlumt.h
ida/ida spils.h ida/ida spgmr.h
ida/ida spbcgs.h ida/ida sptfqmr.h
ida/ida bbdpre.h

idas Libraries libsundials idas.lib
Header files idas/idas.h idas/idas impl.h

idas/idas direct.h idas/idas lapack.h
idas/idas dense.h idas/idas band.h
idas/idas sparse.h idas/idas klu.h
idas/idas superlumt.h
idas/idas spils.h idas/idas spgmr.h
idas/idas spbcgs.h idas/idas sptfqmr.h
idas/idas bbdpre.h

kinsol Libraries libsundials kinsol.lib libsundials fkinsol.a
Header files kinsol/kinsol.h kinsol/kinsol impl.h

kinsol/kinsol direct.h kinsol/kinsol lapack.h
kinsol/kinsol dense.h kinsol/kinsol band.h
kinsol/kinsol sparse.h kinsol/kinsol klu.h
kinsol/kinsol superlumt.h
kinsol/kinsol spils.h kinsol/kinsol spgmr.h
kinsol/kinsol spbcgs.h kinsol/kinsol sptfqmr.h
kinsol/kinsol bbdpre.h kinsol/kinsol spfgmr.h





Appendix B

CVODE Constants

Below we list all input and output constants used by the main solver and linear solver modules,
together with their numerical values and a short description of their meaning.

B.1 CVODE input constants

cvode main solver module

CV ADAMS 1 Adams-Moulton linear multistep method.
CV BDF 2 BDF linear multistep method.
CV FUNCTIONAL 1 Nonlinear system solution through functional iterations.
CV NEWTON 2 Nonlinear system solution through Newton iterations.
CV NORMAL 1 Solver returns at specified output time.
CV ONE STEP 2 Solver returns after each successful step.

Iterative linear solver module

PREC NONE 0 No preconditioning
PREC LEFT 1 Preconditioning on the left only.
PREC RIGHT 2 Preconditioning on the right only.
PREC BOTH 3 Preconditioning on both the left and the right.
MODIFIED GS 1 Use modified Gram-Schmidt procedure.
CLASSICAL GS 2 Use classical Gram-Schmidt procedure.

B.2 CVODE output constants

cvode main solver module

CV SUCCESS 0 Successful function return.
CV TSTOP RETURN 1 CVode succeeded by reaching the specified stopping point.
CV ROOT RETURN 2 CVode succeeded and found one or more roots.
CV WARNING 99 CVode succeeded but an unusual situation occurred.
CV TOO MUCH WORK -1 The solver took mxstep internal steps but could not reach

tout.
CV TOO MUCH ACC -2 The solver could not satisfy the accuracy demanded by the

user for some internal step.
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CV ERR FAILURE -3 Error test failures occurred too many times during one in-
ternal time step or minimum step size was reached.

CV CONV FAILURE -4 Convergence test failures occurred too many times during
one internal time step or minimum step size was reached.

CV LINIT FAIL -5 The linear solver’s initialization function failed.
CV LSETUP FAIL -6 The linear solver’s setup function failed in an unrecoverable

manner.
CV LSOLVE FAIL -7 The linear solver’s solve function failed in an unrecoverable

manner.
CV RHSFUNC FAIL -8 The right-hand side function failed in an unrecoverable man-

ner.
CV FIRST RHSFUNC ERR -9 The right-hand side function failed at the first call.
CV REPTD RHSFUNC ERR -10 The right-hand side function had repetead recoverable er-

rors.
CV UNREC RHSFUNC ERR -11 The right-hand side function had a recoverable error, but no

recovery is possible.
CV RTFUNC FAIL -12 The rootfinding function failed in an unrecoverable manner.
CV MEM FAIL -20 A memory allocation failed.
CV MEM NULL -21 The cvode mem argument was NULL.
CV ILL INPUT -22 One of the function inputs is illegal.
CV NO MALLOC -23 The cvode memory block was not allocated by a call to

CVodeMalloc.
CV BAD K -24 The derivative order k is larger than the order used.
CV BAD T -25 The time t is outside the last step taken.
CV BAD DKY -26 The output derivative vector is NULL.
CV TOO CLOSE -27 The output and initial times are too close to each other.

cvdls linear solver modules

CVDLS SUCCESS 0 Successful function return.
CVDLS MEM NULL -1 The cvode mem argument was NULL.
CVDLS LMEM NULL -2 The cvdls linear solver has not been initialized.
CVDLS ILL INPUT -3 The cvdls solver is not compatible with the current nvec-

tor module.
CVDLS MEM FAIL -4 A memory allocation request failed.
CVDLS JACFUNC UNRECVR -5 The Jacobian function failed in an unrecoverable manner.
CVDLS JACFUNC RECVR -6 The Jacobian function had a recoverable error.

cvdiag linear solver module

CVDIAG SUCCESS 0 Successful function return.
CVDIAG MEM NULL -1 The cvode mem argument was NULL.
CVDIAG LMEM NULL -2 The cvdiag linear solver has not been initialized.
CVDIAG ILL INPUT -3 The cvdiag solver is not compatible with the current nvec-

tor module.
CVDIAG MEM FAIL -4 A memory allocation request failed.
CVDIAG INV FAIL -5 A diagonal element of the Jacobian was 0.
CVDIAG RHSFUNC UNRECVR -6 The right-hand side function failed in an unrecoverable man-

ner.
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CVDIAG RHSFUNC RECVR -7 The right-hand side function had a recoverable error.

cvsls linear solver module

CVSLS SUCCESS 0 Successful function return.
CVSLS MEM NULL -1 The cv mem argument was NULL.
CVSLS LMEM NULL -2 The cvsls linear solver has not been initialized.
CVSLS ILL INPUT -3 The cvsls solver is not compatible with the current nvec-

tor module or other input is invalid.
CVSLS MEM FAIL -4 A memory allocation request failed.
CVSLS JAC NOSET -5 The Jacobian evaluation routine was not been set before the

linear solver setup routine was called.
CVSLS PACKAGE FAIL -6 An external package call return a failure error code.
CVSLS JACFUNC UNRECVR -7 The Jacobian function failed in an unrecoverable manner.
CVSLS JACFUNC RECVR -8 The Jacobian function had a recoverable error.

cvspils linear solver modules

CVSPILS SUCCESS 0 Successful function return.
CVSPILS MEM NULL -1 The cvode mem argument was NULL.
CVSPILS LMEM NULL -2 The cvspils linear solver has not been initialized.
CVSPILS ILL INPUT -3 The cvspils solver is not compatible with the current nvec-

tor module, or an input value was illegal.
CVSPILS MEM FAIL -4 A memory allocation request failed.
CVSPILS PMEM NULL -5 The preconditioner module has not been initialized.

spgmr generic linear solver module

SPGMR SUCCESS 0 Converged.
SPGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPGMR CONV FAIL 2 Failure to converge.
SPGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPGMR PSET FAIL REC 6 The preconditioner setup routine failed recoverably.
SPGMR MEM NULL -1 The spgmr memory is NULL
SPGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPGMR PSET FAIL UNREC -6 The preconditioner setup routine failed unrecoverably.

spfgmr generic linear solver module (only available in kinsol and arkode)

SPFGMR SUCCESS 0 Converged.
SPFGMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPFGMR CONV FAIL 2 Failure to converge.
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SPFGMR QRFACT FAIL 3 A singular matrix was found during the QR factorization.
SPFGMR PSOLVE FAIL REC 4 The preconditioner solve function failed recoverably.
SPFGMR ATIMES FAIL REC 5 The Jacobian-times-vector function failed recoverably.
SPFGMR PSET FAIL REC 6 The preconditioner setup routine failed recoverably.
SPFGMR MEM NULL -1 The spfgmr memory is NULL
SPFGMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPFGMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPFGMR GS FAIL -4 Failure in the Gram-Schmidt procedure.
SPFGMR QRSOL FAIL -5 The matrix R was found to be singular during the QR solve

phase.
SPFGMR PSET FAIL UNREC -6 The preconditioner setup routine failed unrecoverably.

spbcg generic linear solver module

SPBCG SUCCESS 0 Converged.
SPBCG RES REDUCED 1 No convergence, but the residual norm was reduced.
SPBCG CONV FAIL 2 Failure to converge.
SPBCG PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPBCG ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPBCG PSET FAIL REC 5 The preconditioner setup routine failed recoverably.
SPBCG MEM NULL -1 The spbcg memory is NULL
SPBCG ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed unrecoverably.
SPBCG PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPBCG PSET FAIL UNREC -4 The preconditioner setup routine failed unrecoverably.

sptfqmr generic linear solver module

SPTFQMR SUCCESS 0 Converged.
SPTFQMR RES REDUCED 1 No convergence, but the residual norm was reduced.
SPTFQMR CONV FAIL 2 Failure to converge.
SPTFQMR PSOLVE FAIL REC 3 The preconditioner solve function failed recoverably.
SPTFQMR ATIMES FAIL REC 4 The Jacobian-times-vector function failed recoverably.
SPTFQMR PSET FAIL REC 5 The preconditioner setup routine failed recoverably.
SPTFQMR MEM NULL -1 The sptfqmr memory is NULL
SPTFQMR ATIMES FAIL UNREC -2 The Jacobian-times-vector function failed.
SPTFQMR PSOLVE FAIL UNREC -3 The preconditioner solve function failed unrecoverably.
SPTFQMR PSET FAIL UNREC -4 The preconditioner setup routine failed unrecoverably.
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